Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=-5 ab=1\times 4=4
Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді x^{2}+ax+bx+4. Щоб знайти a та b, настройте систему для вирішено.
-1,-4 -2,-2
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b від'ємне, a і b мають від’ємне значення. Наведіть усі пари цілих чисел, добуток яких дорівнює 4.
-1-4=-5 -2-2=-4
Обчисліть суму для кожної пари.
a=-4 b=-1
Розв’язком буде пара, що в сумі дорівнює -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
Перепишіть x^{2}-5x+4 як \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
x на першій та -1 в друге групу.
\left(x-4\right)\left(x-1\right)
Винесіть за дужки спільний член x-4, використовуючи властивість дистрибутивності.
x^{2}-5x+4=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Піднесіть -5 до квадрата.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Помножте -4 на 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Додайте 25 до -16.
x=\frac{-\left(-5\right)±3}{2}
Видобудьте квадратний корінь із 9.
x=\frac{5±3}{2}
Число, протилежне до -5, дорівнює 5.
x=\frac{8}{2}
Тепер розв’яжіть рівняння x=\frac{5±3}{2} за додатного значення ±. Додайте 5 до 3.
x=4
Розділіть 8 на 2.
x=\frac{2}{2}
Тепер розв’яжіть рівняння x=\frac{5±3}{2} за від’ємного значення ±. Відніміть 3 від 5.
x=1
Розділіть 2 на 2.
x^{2}-5x+4=\left(x-4\right)\left(x-1\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть 4 на x_{1} та 1 на x_{2}.