Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=-10 ab=1\left(-24\right)=-24
Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді x^{2}+ax+bx-24. Щоб знайти a та b, настройте систему для вирішено.
1,-24 2,-12 3,-8 4,-6
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Обчисліть суму для кожної пари.
a=-12 b=2
Розв’язком буде пара, що в сумі дорівнює -10.
\left(x^{2}-12x\right)+\left(2x-24\right)
Перепишіть x^{2}-10x-24 як \left(x^{2}-12x\right)+\left(2x-24\right).
x\left(x-12\right)+2\left(x-12\right)
x на першій та 2 в друге групу.
\left(x-12\right)\left(x+2\right)
Винесіть за дужки спільний член x-12, використовуючи властивість дистрибутивності.
x^{2}-10x-24=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-24\right)}}{2}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-24\right)}}{2}
Піднесіть -10 до квадрата.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2}
Помножте -4 на -24.
x=\frac{-\left(-10\right)±\sqrt{196}}{2}
Додайте 100 до 96.
x=\frac{-\left(-10\right)±14}{2}
Видобудьте квадратний корінь із 196.
x=\frac{10±14}{2}
Число, протилежне до -10, дорівнює 10.
x=\frac{24}{2}
Тепер розв’яжіть рівняння x=\frac{10±14}{2} за додатного значення ±. Додайте 10 до 14.
x=12
Розділіть 24 на 2.
x=-\frac{4}{2}
Тепер розв’яжіть рівняння x=\frac{10±14}{2} за від’ємного значення ±. Відніміть 14 від 10.
x=-2
Розділіть -4 на 2.
x^{2}-10x-24=\left(x-12\right)\left(x-\left(-2\right)\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть 12 на x_{1} та -2 на x_{2}.
x^{2}-10x-24=\left(x-12\right)\left(x+2\right)
Спростіть усі вирази виду p-\left(-q\right) до виразів виду p+q.