Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=-10 ab=1\times 24=24
Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді x^{2}+ax+bx+24. Щоб знайти a та b, настройте систему для вирішено.
-1,-24 -2,-12 -3,-8 -4,-6
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b від'ємне, a і b мають від’ємне значення. Наведіть усі пари цілих чисел, добуток яких дорівнює 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Обчисліть суму для кожної пари.
a=-6 b=-4
Розв’язком буде пара, що в сумі дорівнює -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Перепишіть x^{2}-10x+24 як \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
x на першій та -4 в друге групу.
\left(x-6\right)\left(x-4\right)
Винесіть за дужки спільний член x-6, використовуючи властивість дистрибутивності.
x^{2}-10x+24=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Піднесіть -10 до квадрата.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Помножте -4 на 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Додайте 100 до -96.
x=\frac{-\left(-10\right)±2}{2}
Видобудьте квадратний корінь із 4.
x=\frac{10±2}{2}
Число, протилежне до -10, дорівнює 10.
x=\frac{12}{2}
Тепер розв’яжіть рівняння x=\frac{10±2}{2} за додатного значення ±. Додайте 10 до 2.
x=6
Розділіть 12 на 2.
x=\frac{8}{2}
Тепер розв’яжіть рівняння x=\frac{10±2}{2} за від’ємного значення ±. Відніміть 2 від 10.
x=4
Розділіть 8 на 2.
x^{2}-10x+24=\left(x-6\right)\left(x-4\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть 6 на x_{1} та 4 на x_{2}.