Знайти x
x\in (-\infty,0]\cup [25,\infty)
Графік
Ділити
Скопійовано в буфер обміну
x^{2}-25x\geq 0
Відніміть 25x з обох сторін.
x\left(x-25\right)\geq 0
Винесіть x за дужки.
x\leq 0 x-25\leq 0
Щоб добуток був ≥0, x і x-25 мають одночасно бути або ≤0, або ≥0. Розглянемо випадок, коли x і x-25 ≤0.
x\leq 0
Обидві нерівності мають такий розв’язок: x\leq 0.
x-25\geq 0 x\geq 0
Розглянемо випадок, коли x і x-25 ≥0.
x\geq 25
Обидві нерівності мають такий розв’язок: x\geq 25.
x\leq 0\text{; }x\geq 25
Остаточний розв’язок – об’єднання отриманих розв’язків.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}