Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

x^{2}-4x=12
Відніміть 4x з обох сторін.
x^{2}-4x-12=0
Відніміть 12 з обох сторін.
a+b=-4 ab=-12
Щоб розв'язати рівняння, x^{2}-4x-12 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
1,-12 2,-6 3,-4
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює -12.
1-12=-11 2-6=-4 3-4=-1
Обчисліть суму для кожної пари.
a=-6 b=2
Розв’язком буде пара, що в сумі дорівнює -4.
\left(x-6\right)\left(x+2\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=6 x=-2
Щоб знайти рішення для формул, Розв'яжіть x-6=0 та x+2=0.
x^{2}-4x=12
Відніміть 4x з обох сторін.
x^{2}-4x-12=0
Відніміть 12 з обох сторін.
a+b=-4 ab=1\left(-12\right)=-12
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx-12. Щоб знайти a та b, настройте систему для вирішено.
1,-12 2,-6 3,-4
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює -12.
1-12=-11 2-6=-4 3-4=-1
Обчисліть суму для кожної пари.
a=-6 b=2
Розв’язком буде пара, що в сумі дорівнює -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Перепишіть x^{2}-4x-12 як \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
x на першій та 2 в друге групу.
\left(x-6\right)\left(x+2\right)
Винесіть за дужки спільний член x-6, використовуючи властивість дистрибутивності.
x=6 x=-2
Щоб знайти рішення для формул, Розв'яжіть x-6=0 та x+2=0.
x^{2}-4x=12
Відніміть 4x з обох сторін.
x^{2}-4x-12=0
Відніміть 12 з обох сторін.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -4 замість b і -12 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Піднесіть -4 до квадрата.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Помножте -4 на -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Додайте 16 до 48.
x=\frac{-\left(-4\right)±8}{2}
Видобудьте квадратний корінь із 64.
x=\frac{4±8}{2}
Число, протилежне до -4, дорівнює 4.
x=\frac{12}{2}
Тепер розв’яжіть рівняння x=\frac{4±8}{2} за додатного значення ±. Додайте 4 до 8.
x=6
Розділіть 12 на 2.
x=-\frac{4}{2}
Тепер розв’яжіть рівняння x=\frac{4±8}{2} за від’ємного значення ±. Відніміть 8 від 4.
x=-2
Розділіть -4 на 2.
x=6 x=-2
Тепер рівняння розв’язано.
x^{2}-4x=12
Відніміть 4x з обох сторін.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
Поділіть -4 (коефіцієнт члена x) на 2, щоб отримати -2. Потім додайте -2 у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-4x+4=12+4
Піднесіть -2 до квадрата.
x^{2}-4x+4=16
Додайте 12 до 4.
\left(x-2\right)^{2}=16
Розкладіть x^{2}-4x+4 на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Видобудьте квадратний корінь з обох сторін рівняння.
x-2=4 x-2=-4
Виконайте спрощення.
x=6 x=-2
Додайте 2 до обох сторін цього рівняння.