Знайдіть x
x=-6
x=5
Графік
Ділити
Скопійовано в буфер обміну
a+b=1 ab=-30
Щоб розв'язати рівняння, x^{2}+x-30 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
-1,30 -2,15 -3,10 -5,6
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Обчисліть суму для кожної пари.
a=-5 b=6
Розв’язком буде пара, що в сумі дорівнює 1.
\left(x-5\right)\left(x+6\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=5 x=-6
Щоб знайти рішення для формул, Розв'яжіть x-5=0 та x+6=0.
a+b=1 ab=1\left(-30\right)=-30
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx-30. Щоб знайти a та b, настройте систему для вирішено.
-1,30 -2,15 -3,10 -5,6
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Обчисліть суму для кожної пари.
a=-5 b=6
Розв’язком буде пара, що в сумі дорівнює 1.
\left(x^{2}-5x\right)+\left(6x-30\right)
Перепишіть x^{2}+x-30 як \left(x^{2}-5x\right)+\left(6x-30\right).
x\left(x-5\right)+6\left(x-5\right)
x на першій та 6 в друге групу.
\left(x-5\right)\left(x+6\right)
Винесіть за дужки спільний член x-5, використовуючи властивість дистрибутивності.
x=5 x=-6
Щоб знайти рішення для формул, Розв'яжіть x-5=0 та x+6=0.
x^{2}+x-30=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, 1 замість b і -30 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
Піднесіть 1 до квадрата.
x=\frac{-1±\sqrt{1+120}}{2}
Помножте -4 на -30.
x=\frac{-1±\sqrt{121}}{2}
Додайте 1 до 120.
x=\frac{-1±11}{2}
Видобудьте квадратний корінь із 121.
x=\frac{10}{2}
Тепер розв’яжіть рівняння x=\frac{-1±11}{2} за додатного значення ±. Додайте -1 до 11.
x=5
Розділіть 10 на 2.
x=-\frac{12}{2}
Тепер розв’яжіть рівняння x=\frac{-1±11}{2} за від’ємного значення ±. Відніміть 11 від -1.
x=-6
Розділіть -12 на 2.
x=5 x=-6
Тепер рівняння розв’язано.
x^{2}+x-30=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
x^{2}+x-30-\left(-30\right)=-\left(-30\right)
Додайте 30 до обох сторін цього рівняння.
x^{2}+x=-\left(-30\right)
Якщо відняти -30 від самого себе, залишиться 0.
x^{2}+x=30
Відніміть -30 від 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Поділіть 1 (коефіцієнт члена x) на 2, щоб отримати \frac{1}{2}. Потім додайте \frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
Щоб піднести \frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
Додайте 30 до \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
Розкладіть x^{2}+x+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
Виконайте спрощення.
x=5 x=-6
Відніміть \frac{1}{2} від обох сторін цього рівняння.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}