Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=5 ab=6
Щоб розв'язати рівняння, x^{2}+5x+6 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
1,6 2,3
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b додатне, a і b – це не додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює 6.
1+6=7 2+3=5
Обчисліть суму для кожної пари.
a=2 b=3
Розв’язком буде пара, що в сумі дорівнює 5.
\left(x+2\right)\left(x+3\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=-2 x=-3
Щоб знайти рішення для формул, Розв'яжіть x+2=0 та x+3=0.
a+b=5 ab=1\times 6=6
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx+6. Щоб знайти a та b, настройте систему для вирішено.
1,6 2,3
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b додатне, a і b – це не додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює 6.
1+6=7 2+3=5
Обчисліть суму для кожної пари.
a=2 b=3
Розв’язком буде пара, що в сумі дорівнює 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Перепишіть x^{2}+5x+6 як \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
x на першій та 3 в друге групу.
\left(x+2\right)\left(x+3\right)
Винесіть за дужки спільний член x+2, використовуючи властивість дистрибутивності.
x=-2 x=-3
Щоб знайти рішення для формул, Розв'яжіть x+2=0 та x+3=0.
x^{2}+5x+6=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, 5 замість b і 6 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Піднесіть 5 до квадрата.
x=\frac{-5±\sqrt{25-24}}{2}
Помножте -4 на 6.
x=\frac{-5±\sqrt{1}}{2}
Додайте 25 до -24.
x=\frac{-5±1}{2}
Видобудьте квадратний корінь із 1.
x=-\frac{4}{2}
Тепер розв’яжіть рівняння x=\frac{-5±1}{2} за додатного значення ±. Додайте -5 до 1.
x=-2
Розділіть -4 на 2.
x=-\frac{6}{2}
Тепер розв’яжіть рівняння x=\frac{-5±1}{2} за від’ємного значення ±. Відніміть 1 від -5.
x=-3
Розділіть -6 на 2.
x=-2 x=-3
Тепер рівняння розв’язано.
x^{2}+5x+6=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
x^{2}+5x+6-6=-6
Відніміть 6 від обох сторін цього рівняння.
x^{2}+5x=-6
Якщо відняти 6 від самого себе, залишиться 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Поділіть 5 (коефіцієнт члена x) на 2, щоб отримати \frac{5}{2}. Потім додайте \frac{5}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Щоб піднести \frac{5}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Додайте -6 до \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Розкладіть x^{2}+5x+\frac{25}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Виконайте спрощення.
x=-2 x=-3
Відніміть \frac{5}{2} від обох сторін цього рівняння.