Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=3 ab=1\left(-4\right)=-4
Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді x^{2}+ax+bx-4. Щоб знайти a та b, настройте систему для вирішено.
-1,4 -2,2
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -4.
-1+4=3 -2+2=0
Обчисліть суму для кожної пари.
a=-1 b=4
Розв’язком буде пара, що в сумі дорівнює 3.
\left(x^{2}-x\right)+\left(4x-4\right)
Перепишіть x^{2}+3x-4 як \left(x^{2}-x\right)+\left(4x-4\right).
x\left(x-1\right)+4\left(x-1\right)
x на першій та 4 в друге групу.
\left(x-1\right)\left(x+4\right)
Винесіть за дужки спільний член x-1, використовуючи властивість дистрибутивності.
x^{2}+3x-4=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Піднесіть 3 до квадрата.
x=\frac{-3±\sqrt{9+16}}{2}
Помножте -4 на -4.
x=\frac{-3±\sqrt{25}}{2}
Додайте 9 до 16.
x=\frac{-3±5}{2}
Видобудьте квадратний корінь із 25.
x=\frac{2}{2}
Тепер розв’яжіть рівняння x=\frac{-3±5}{2} за додатного значення ±. Додайте -3 до 5.
x=1
Розділіть 2 на 2.
x=-\frac{8}{2}
Тепер розв’яжіть рівняння x=\frac{-3±5}{2} за від’ємного значення ±. Відніміть 5 від -3.
x=-4
Розділіть -8 на 2.
x^{2}+3x-4=\left(x-1\right)\left(x-\left(-4\right)\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть 1 на x_{1} та -4 на x_{2}.
x^{2}+3x-4=\left(x-1\right)\left(x+4\right)
Спростіть усі вирази виду p-\left(-q\right) до виразів виду p+q.