Знайдіть d (complex solution)
\left\{\begin{matrix}d=-\frac{a-l}{n-1}\text{, }&n\neq 1\\d\in \mathrm{C}\text{, }&l=a\text{ and }n=1\end{matrix}\right,
Знайдіть a
a=l+d-dn
Знайдіть d
\left\{\begin{matrix}d=-\frac{a-l}{n-1}\text{, }&n\neq 1\\d\in \mathrm{R}\text{, }&l=a\text{ and }n=1\end{matrix}\right,
Вікторина
Linear Equation
l = a + ( n - 1 ) d
Ділити
Скопійовано в буфер обміну
l=a+nd-d
Скористайтеся властивістю дистрибутивності, щоб помножити n-1 на d.
a+nd-d=l
Перенесіть усі змінні члени до лівої частини рівняння.
nd-d=l-a
Відніміть a з обох сторін.
\left(n-1\right)d=l-a
Зведіть усі члени, що містять d.
\frac{\left(n-1\right)d}{n-1}=\frac{l-a}{n-1}
Розділіть обидві сторони на n-1.
d=\frac{l-a}{n-1}
Ділення на n-1 скасовує множення на n-1.
l=a+nd-d
Скористайтеся властивістю дистрибутивності, щоб помножити n-1 на d.
a+nd-d=l
Перенесіть усі змінні члени до лівої частини рівняння.
a-d=l-nd
Відніміть nd з обох сторін.
a=l-nd+d
Додайте d до обох сторін.
l=a+nd-d
Скористайтеся властивістю дистрибутивності, щоб помножити n-1 на d.
a+nd-d=l
Перенесіть усі змінні члени до лівої частини рівняння.
nd-d=l-a
Відніміть a з обох сторін.
\left(n-1\right)d=l-a
Зведіть усі члени, що містять d.
\frac{\left(n-1\right)d}{n-1}=\frac{l-a}{n-1}
Розділіть обидві сторони на n-1.
d=\frac{l-a}{n-1}
Ділення на n-1 скасовує множення на n-1.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}