Перейти до основного контенту
Диференціювати за t
Tick mark Image
Обчислити
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\frac{\left(2t^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{1})-2t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(2t^{2}+1)}{\left(2t^{2}+1\right)^{2}}
Для будь-яких двох диференційовних функцій похідна їхньої частки дорівнює дробу: різниця добутку знаменника на похідну чисельника та добутку чисельника на похідну знаменника, розділена на квадрат знаменника.
\frac{\left(2t^{2}+1\right)\times 2t^{1-1}-2t^{1}\times 2\times 2t^{2-1}}{\left(2t^{2}+1\right)^{2}}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
\frac{\left(2t^{2}+1\right)\times 2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
Виконайте арифметичні операції.
\frac{2t^{2}\times 2t^{0}+2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
Розкладіть за допомогою властивості дистрибутивності.
\frac{2\times 2t^{2}+2t^{0}-2\times 4t^{1+1}}{\left(2t^{2}+1\right)^{2}}
Щоб перемножити степені з однаковими основами, просто додайте їхні показники.
\frac{4t^{2}+2t^{0}-8t^{2}}{\left(2t^{2}+1\right)^{2}}
Виконайте арифметичні операції.
\frac{\left(4-8\right)t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
Зведіть подібні члени.
\frac{-4t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
Відніміть 8 від 4.
\frac{2\left(-2t^{2}+t^{0}\right)}{\left(2t^{2}+1\right)^{2}}
Винесіть 2 за дужки.
\frac{2\left(-2t^{2}+1\right)}{\left(2t^{2}+1\right)^{2}}
Для будь-якого члена t, окрім 0, t^{0}=1.