Знайдіть N
\left\{\begin{matrix}N=\frac{100000000000000Fk}{6667mg^{2}}\text{, }&g\neq 0\text{ and }m\neq 0\text{ and }k\neq 0\\N\in \mathrm{R}\text{, }&\left(g=0\text{ or }m=0\right)\text{ and }F=0\text{ and }k\neq 0\end{matrix}\right,
Знайдіть F
F=\frac{6667Nmg^{2}}{100000000000000k}
k\neq 0
Ділити
Скопійовано в буфер обміну
Fk=6,667\times 10^{-11}Nmg^{2}
Помножте обидві сторони цього рівняння на k.
Fk=6,667\times \frac{1}{100000000000}Nmg^{2}
Обчисліть 10 у степені -11 і отримайте \frac{1}{100000000000}.
Fk=\frac{6667}{100000000000000}Nmg^{2}
Помножте 6,667 на \frac{1}{100000000000}, щоб отримати \frac{6667}{100000000000000}.
\frac{6667}{100000000000000}Nmg^{2}=Fk
Перенесіть усі змінні члени до лівої частини рівняння.
\frac{6667mg^{2}}{100000000000000}N=Fk
Рівняння має стандартну форму.
\frac{100000000000000\times \frac{6667mg^{2}}{100000000000000}N}{6667mg^{2}}=\frac{100000000000000Fk}{6667mg^{2}}
Розділіть обидві сторони на \frac{6667}{100000000000000}mg^{2}.
N=\frac{100000000000000Fk}{6667mg^{2}}
Ділення на \frac{6667}{100000000000000}mg^{2} скасовує множення на \frac{6667}{100000000000000}mg^{2}.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}