Розкласти на множники
\left(2x-y\right)\left(2x+y\right)\left(4x^{2}-2xy+y^{2}\right)\left(4x^{2}+2xy+y^{2}\right)
Обчислити
\left(4x^{2}-y^{2}\right)\left(-4\left(xy\right)^{2}+\left(4x^{2}+y^{2}\right)^{2}\right)
Ділити
Скопійовано в буфер обміну
\left(8x^{3}-y^{3}\right)\left(8x^{3}+y^{3}\right)
Перепишіть 64x^{6}-y^{6} як \left(8x^{3}\right)^{2}-\left(y^{3}\right)^{2}. Різниця квадратів можна розкласти множники за допомогою правила: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(2x-y\right)\left(4x^{2}+2xy+y^{2}\right)
Розглянемо 8x^{3}-y^{3}. Перепишіть 8x^{3}-y^{3} як \left(2x\right)^{3}-y^{3}. Різниця кубів можна розкласти множники за допомогою правила: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(2x+y\right)\left(4x^{2}-2xy+y^{2}\right)
Розглянемо 8x^{3}+y^{3}. Сума кубів можна розкласти множники за допомогою правила: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(2x-y\right)\left(2x+y\right)\left(4x^{2}-2xy+y^{2}\right)\left(4x^{2}+2xy+y^{2}\right)
Переписати повністю розкладений на множники вираз.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}