Знайдіть x
x=-6
Графік
Ділити
Скопійовано в буфер обміну
x^{2}+12x+36=0
Розділіть обидві сторони на 5.
a+b=12 ab=1\times 36=36
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx+36. Щоб знайти a та b, настройте систему для вирішено.
1,36 2,18 3,12 4,9 6,6
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b додатне, a і b – це не додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Обчисліть суму для кожної пари.
a=6 b=6
Розв’язком буде пара, що в сумі дорівнює 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Перепишіть x^{2}+12x+36 як \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
x на першій та 6 в друге групу.
\left(x+6\right)\left(x+6\right)
Винесіть за дужки спільний член x+6, використовуючи властивість дистрибутивності.
\left(x+6\right)^{2}
Перепишіть у вигляді квадрата двочлена.
x=-6
Щоб знайти розв’язок рівняння, обчисліть x+6=0.
5x^{2}+60x+180=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-60±\sqrt{60^{2}-4\times 5\times 180}}{2\times 5}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 5 замість a, 60 замість b і 180 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 5\times 180}}{2\times 5}
Піднесіть 60 до квадрата.
x=\frac{-60±\sqrt{3600-20\times 180}}{2\times 5}
Помножте -4 на 5.
x=\frac{-60±\sqrt{3600-3600}}{2\times 5}
Помножте -20 на 180.
x=\frac{-60±\sqrt{0}}{2\times 5}
Додайте 3600 до -3600.
x=-\frac{60}{2\times 5}
Видобудьте квадратний корінь із 0.
x=-\frac{60}{10}
Помножте 2 на 5.
x=-6
Розділіть -60 на 10.
5x^{2}+60x+180=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
5x^{2}+60x+180-180=-180
Відніміть 180 від обох сторін цього рівняння.
5x^{2}+60x=-180
Якщо відняти 180 від самого себе, залишиться 0.
\frac{5x^{2}+60x}{5}=-\frac{180}{5}
Розділіть обидві сторони на 5.
x^{2}+\frac{60}{5}x=-\frac{180}{5}
Ділення на 5 скасовує множення на 5.
x^{2}+12x=-\frac{180}{5}
Розділіть 60 на 5.
x^{2}+12x=-36
Розділіть -180 на 5.
x^{2}+12x+6^{2}=-36+6^{2}
Поділіть 12 (коефіцієнт члена x) на 2, щоб отримати 6. Потім додайте 6 у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}+12x+36=-36+36
Піднесіть 6 до квадрата.
x^{2}+12x+36=0
Додайте -36 до 36.
\left(x+6\right)^{2}=0
Розкладіть x^{2}+12x+36 на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Видобудьте квадратний корінь з обох сторін рівняння.
x+6=0 x+6=0
Виконайте спрощення.
x=-6 x=-6
Відніміть 6 від обох сторін цього рівняння.
x=-6
Тепер рівняння розв’язано. Розв’язки збігаються.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}