Знайдіть x
x=-\frac{1}{2}=-0,5
Графік
Вікторина
Polynomial
4 x ^ { 2 } + 4 x + 1 = 0
Ділити
Скопійовано в буфер обміну
a+b=4 ab=4\times 1=4
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді 4x^{2}+ax+bx+1. Щоб знайти a та b, настройте систему для вирішено.
1,4 2,2
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b додатне, a і b – це не додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює 4.
1+4=5 2+2=4
Обчисліть суму для кожної пари.
a=2 b=2
Розв’язком буде пара, що в сумі дорівнює 4.
\left(4x^{2}+2x\right)+\left(2x+1\right)
Перепишіть 4x^{2}+4x+1 як \left(4x^{2}+2x\right)+\left(2x+1\right).
2x\left(2x+1\right)+2x+1
Винесіть за дужки 2x в 4x^{2}+2x.
\left(2x+1\right)\left(2x+1\right)
Винесіть за дужки спільний член 2x+1, використовуючи властивість дистрибутивності.
\left(2x+1\right)^{2}
Перепишіть у вигляді квадрата двочлена.
x=-\frac{1}{2}
Щоб знайти розв’язок рівняння, обчисліть 2x+1=0.
4x^{2}+4x+1=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 4 замість a, 4 замість b і 1 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
Піднесіть 4 до квадрата.
x=\frac{-4±\sqrt{16-16}}{2\times 4}
Помножте -4 на 4.
x=\frac{-4±\sqrt{0}}{2\times 4}
Додайте 16 до -16.
x=-\frac{4}{2\times 4}
Видобудьте квадратний корінь із 0.
x=-\frac{4}{8}
Помножте 2 на 4.
x=-\frac{1}{2}
Поділіть чисельник і знаменник на 4, щоб звести дріб \frac{-4}{8} до нескоротного вигляду.
4x^{2}+4x+1=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
4x^{2}+4x+1-1=-1
Відніміть 1 від обох сторін цього рівняння.
4x^{2}+4x=-1
Якщо відняти 1 від самого себе, залишиться 0.
\frac{4x^{2}+4x}{4}=-\frac{1}{4}
Розділіть обидві сторони на 4.
x^{2}+\frac{4}{4}x=-\frac{1}{4}
Ділення на 4 скасовує множення на 4.
x^{2}+x=-\frac{1}{4}
Розділіть 4 на 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Поділіть 1 (коефіцієнт члена x) на 2, щоб отримати \frac{1}{2}. Потім додайте \frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
Щоб піднести \frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}+x+\frac{1}{4}=0
Щоб додати -\frac{1}{4} до \frac{1}{4}, визначте спільний знаменник і підсумуйте чисельники. Далі по змозі зведіть дріб до нескоротного вигляду.
\left(x+\frac{1}{2}\right)^{2}=0
Розкладіть x^{2}+x+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
Видобудьте квадратний корінь з обох сторін рівняння.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
Виконайте спрощення.
x=-\frac{1}{2} x=-\frac{1}{2}
Відніміть \frac{1}{2} від обох сторін цього рівняння.
x=-\frac{1}{2}
Тепер рівняння розв’язано. Розв’язки збігаються.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}