Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

x\left(3x-1\right)=0
Винесіть x за дужки.
x=0 x=\frac{1}{3}
Щоб знайти рішення для формул, Розв'яжіть x=0 та 3x-1=0.
3x^{2}-x=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 3}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 3 замість a, -1 замість b і 0 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times 3}
Видобудьте квадратний корінь із 1.
x=\frac{1±1}{2\times 3}
Число, протилежне до -1, дорівнює 1.
x=\frac{1±1}{6}
Помножте 2 на 3.
x=\frac{2}{6}
Тепер розв’яжіть рівняння x=\frac{1±1}{6} за додатного значення ±. Додайте 1 до 1.
x=\frac{1}{3}
Поділіть чисельник і знаменник на 2, щоб звести дріб \frac{2}{6} до нескоротного вигляду.
x=\frac{0}{6}
Тепер розв’яжіть рівняння x=\frac{1±1}{6} за від’ємного значення ±. Відніміть 1 від 1.
x=0
Розділіть 0 на 6.
x=\frac{1}{3} x=0
Тепер рівняння розв’язано.
3x^{2}-x=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
\frac{3x^{2}-x}{3}=\frac{0}{3}
Розділіть обидві сторони на 3.
x^{2}-\frac{1}{3}x=\frac{0}{3}
Ділення на 3 скасовує множення на 3.
x^{2}-\frac{1}{3}x=0
Розділіть 0 на 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
Поділіть -\frac{1}{3} (коефіцієнт члена x) на 2, щоб отримати -\frac{1}{6}. Потім додайте -\frac{1}{6} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Щоб піднести -\frac{1}{6} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
Розкладіть x^{2}-\frac{1}{3}x+\frac{1}{36} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Видобудьте квадратний корінь з обох сторін рівняння.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Виконайте спрощення.
x=\frac{1}{3} x=0
Додайте \frac{1}{6} до обох сторін цього рівняння.