Обчислити
\frac{56\sqrt{10}}{3}+4\approx 63,02918299
Розкласти на множники
\frac{4 {(14 \sqrt{10} + 3)}}{3} = 63,029182989809755
Ділити
Скопійовано в буфер обміну
3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Щоб піднести \frac{7+2\sqrt{10}}{3} до якогось степеня, піднесіть до цього степеня чисельник і знаменник, а потім поділіть перший на другий.
\frac{3\left(7+2\sqrt{10}\right)^{2}}{3^{2}}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Виразіть 3\times \frac{\left(7+2\sqrt{10}\right)^{2}}{3^{2}} як єдиний дріб.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+4\times \frac{7+2\sqrt{10}}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Відкиньте 3 у чисельнику й знаменнику.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)}{3}\times \frac{7-2\sqrt{10}}{3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Виразіть 4\times \frac{7+2\sqrt{10}}{3} як єдиний дріб.
\frac{\left(2\sqrt{10}+7\right)^{2}}{3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Щоб помножити \frac{4\left(7+2\sqrt{10}\right)}{3} на \frac{7-2\sqrt{10}}{3}, перемножте між собою окремо їхні чисельники та їхні знаменники.
\frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3}+\frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел 3 та 3\times 3 – це 3\times 3. Помножте \frac{\left(2\sqrt{10}+7\right)^{2}}{3} на \frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \left(\frac{7-2\sqrt{10}}{3}\right)^{2}
Оскільки \frac{3\left(2\sqrt{10}+7\right)^{2}}{3\times 3} та \frac{4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} мають однакову знаменник, додайте їх чисельників.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
Щоб піднести \frac{7-2\sqrt{10}}{3} до якогось степеня, піднесіть до цього степеня чисельник і знаменник, а потім поділіть перший на другий.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(7-2\sqrt{10}\right)^{2}}{3^{2}}
Виразіть 3\times \frac{\left(7-2\sqrt{10}\right)^{2}}{3^{2}} як єдиний дріб.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{\left(-2\sqrt{10}+7\right)^{2}}{3}
Відкиньте 3 у чисельнику й знаменнику.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\left(\sqrt{10}\right)^{2}-28\sqrt{10}+49}{3}
Скористайтеся біномом Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, щоб розкрити дужки в \left(-2\sqrt{10}+7\right)^{2}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{4\times 10-28\sqrt{10}+49}{3}
Квадрат \sqrt{10} дорівнює 10.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{40-28\sqrt{10}+49}{3}
Помножте 4 на 10, щоб отримати 40.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Додайте 40 до 49, щоб обчислити 89.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{3\left(89-28\sqrt{10}\right)}{3\times 3}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел 3\times 3 та 3 – це 3\times 3. Помножте \frac{89-28\sqrt{10}}{3} на \frac{3}{3}.
\frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{3\times 3}
Оскільки знаменник дробів \frac{3\left(2\sqrt{10}+7\right)^{2}+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3} і \frac{3\left(89-28\sqrt{10}\right)}{3\times 3} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{3\left(4\left(\sqrt{10}\right)^{2}+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Скористайтеся біномом Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, щоб розкрити дужки в \left(2\sqrt{10}+7\right)^{2}.
\frac{3\left(4\times 10+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Квадрат \sqrt{10} дорівнює 10.
\frac{3\left(40+28\sqrt{10}+49\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Помножте 4 на 10, щоб отримати 40.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{3\times 3}-\frac{89-28\sqrt{10}}{3}
Додайте 40 до 49, щоб обчислити 89.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{89-28\sqrt{10}}{3}
Помножте 3 на 3, щоб отримати 9.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9}-\frac{3\left(89-28\sqrt{10}\right)}{9}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел 9 та 3 – це 9. Помножте \frac{89-28\sqrt{10}}{3} на \frac{3}{3}.
\frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right)}{9}
Оскільки знаменник дробів \frac{3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)}{9} і \frac{3\left(89-28\sqrt{10}\right)}{9} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}}{9}
Виконайте множення у виразі 3\left(89+28\sqrt{10}\right)+4\left(7+2\sqrt{10}\right)\left(7-2\sqrt{10}\right)-3\left(89-28\sqrt{10}\right).
\frac{36+168\sqrt{10}}{9}
Виконайте арифметичні операції у виразі 267+84\sqrt{10}+196-56\sqrt{10}+56\sqrt{10}-160-267+84\sqrt{10}.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}