Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

16-8x+x^{2}=0
Додайте x^{2} до обох сторін.
x^{2}-8x+16=0
Упорядкуйте многочлен, щоб привести його до стандартного вигляду. Розташуйте доданки в порядку від найвищого степеня до найнижчого.
a+b=-8 ab=16
Щоб розв'язати рівняння, x^{2}-8x+16 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
-1,-16 -2,-8 -4,-4
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b від'ємне, a і b мають від’ємне значення. Наведіть усі пари цілих чисел, добуток яких дорівнює 16.
-1-16=-17 -2-8=-10 -4-4=-8
Обчисліть суму для кожної пари.
a=-4 b=-4
Розв’язком буде пара, що в сумі дорівнює -8.
\left(x-4\right)\left(x-4\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
\left(x-4\right)^{2}
Перепишіть у вигляді квадрата двочлена.
x=4
Щоб знайти розв’язок рівняння, обчисліть x-4=0.
16-8x+x^{2}=0
Додайте x^{2} до обох сторін.
x^{2}-8x+16=0
Упорядкуйте многочлен, щоб привести його до стандартного вигляду. Розташуйте доданки в порядку від найвищого степеня до найнижчого.
a+b=-8 ab=1\times 16=16
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx+16. Щоб знайти a та b, настройте систему для вирішено.
-1,-16 -2,-8 -4,-4
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b від'ємне, a і b мають від’ємне значення. Наведіть усі пари цілих чисел, добуток яких дорівнює 16.
-1-16=-17 -2-8=-10 -4-4=-8
Обчисліть суму для кожної пари.
a=-4 b=-4
Розв’язком буде пара, що в сумі дорівнює -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Перепишіть x^{2}-8x+16 як \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
x на першій та -4 в друге групу.
\left(x-4\right)\left(x-4\right)
Винесіть за дужки спільний член x-4, використовуючи властивість дистрибутивності.
\left(x-4\right)^{2}
Перепишіть у вигляді квадрата двочлена.
x=4
Щоб знайти розв’язок рівняння, обчисліть x-4=0.
16-8x+x^{2}=0
Додайте x^{2} до обох сторін.
x^{2}-8x+16=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -8 замість b і 16 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Піднесіть -8 до квадрата.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Помножте -4 на 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Додайте 64 до -64.
x=-\frac{-8}{2}
Видобудьте квадратний корінь із 0.
x=\frac{8}{2}
Число, протилежне до -8, дорівнює 8.
x=4
Розділіть 8 на 2.
16-8x+x^{2}=0
Додайте x^{2} до обох сторін.
-8x+x^{2}=-16
Відніміть 16 з обох сторін. Якщо відняти будь-яке число від нуля, ви отримаєте його протилежне за знаком число.
x^{2}-8x=-16
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Поділіть -8 (коефіцієнт члена x) на 2, щоб отримати -4. Потім додайте -4 у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-8x+16=-16+16
Піднесіть -4 до квадрата.
x^{2}-8x+16=0
Додайте -16 до 16.
\left(x-4\right)^{2}=0
Розкладіть x^{2}-8x+16 на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Видобудьте квадратний корінь з обох сторін рівняння.
x-4=0 x-4=0
Виконайте спрощення.
x=4 x=4
Додайте 4 до обох сторін цього рівняння.
x=4
Тепер рівняння розв’язано. Розв’язки збігаються.