Перейти до основного контенту
Знайдіть q
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

q^{2}=\frac{25}{144}
Розділіть обидві сторони на 144.
q^{2}-\frac{25}{144}=0
Відніміть \frac{25}{144} з обох сторін.
144q^{2}-25=0
Помножте обидві сторони на 144.
\left(12q-5\right)\left(12q+5\right)=0
Розглянемо 144q^{2}-25. Перепишіть 144q^{2}-25 як \left(12q\right)^{2}-5^{2}. Різниця квадратів можна розкласти множники за допомогою правила: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
q=\frac{5}{12} q=-\frac{5}{12}
Щоб знайти рішення для формул, Розв'яжіть 12q-5=0 та 12q+5=0.
q^{2}=\frac{25}{144}
Розділіть обидві сторони на 144.
q=\frac{5}{12} q=-\frac{5}{12}
Видобудьте квадратний корінь з обох сторін рівняння.
q^{2}=\frac{25}{144}
Розділіть обидві сторони на 144.
q^{2}-\frac{25}{144}=0
Відніміть \frac{25}{144} з обох сторін.
q=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{144}\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, 0 замість b і -\frac{25}{144} замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-\frac{25}{144}\right)}}{2}
Піднесіть 0 до квадрата.
q=\frac{0±\sqrt{\frac{25}{36}}}{2}
Помножте -4 на -\frac{25}{144}.
q=\frac{0±\frac{5}{6}}{2}
Видобудьте квадратний корінь із \frac{25}{36}.
q=\frac{5}{12}
Тепер розв’яжіть рівняння q=\frac{0±\frac{5}{6}}{2} за додатного значення ±.
q=-\frac{5}{12}
Тепер розв’яжіть рівняння q=\frac{0±\frac{5}{6}}{2} за від’ємного значення ±.
q=\frac{5}{12} q=-\frac{5}{12}
Тепер рівняння розв’язано.