Розкласти на множники
\left(3x-2\right)\left(4x+1\right)
Обчислити
\left(3x-2\right)\left(4x+1\right)
Графік
Ділити
Скопійовано в буфер обміну
a+b=-5 ab=12\left(-2\right)=-24
Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді 12x^{2}+ax+bx-2. Щоб знайти a та b, настройте систему для вирішено.
1,-24 2,-12 3,-8 4,-6
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Обчисліть суму для кожної пари.
a=-8 b=3
Розв’язком буде пара, що в сумі дорівнює -5.
\left(12x^{2}-8x\right)+\left(3x-2\right)
Перепишіть 12x^{2}-5x-2 як \left(12x^{2}-8x\right)+\left(3x-2\right).
4x\left(3x-2\right)+3x-2
Винесіть за дужки 4x в 12x^{2}-8x.
\left(3x-2\right)\left(4x+1\right)
Винесіть за дужки спільний член 3x-2, використовуючи властивість дистрибутивності.
12x^{2}-5x-2=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12\left(-2\right)}}{2\times 12}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12\left(-2\right)}}{2\times 12}
Піднесіть -5 до квадрата.
x=\frac{-\left(-5\right)±\sqrt{25-48\left(-2\right)}}{2\times 12}
Помножте -4 на 12.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 12}
Помножте -48 на -2.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\times 12}
Додайте 25 до 96.
x=\frac{-\left(-5\right)±11}{2\times 12}
Видобудьте квадратний корінь із 121.
x=\frac{5±11}{2\times 12}
Число, протилежне до -5, дорівнює 5.
x=\frac{5±11}{24}
Помножте 2 на 12.
x=\frac{16}{24}
Тепер розв’яжіть рівняння x=\frac{5±11}{24} за додатного значення ±. Додайте 5 до 11.
x=\frac{2}{3}
Поділіть чисельник і знаменник на 8, щоб звести дріб \frac{16}{24} до нескоротного вигляду.
x=-\frac{6}{24}
Тепер розв’яжіть рівняння x=\frac{5±11}{24} за від’ємного значення ±. Відніміть 11 від 5.
x=-\frac{1}{4}
Поділіть чисельник і знаменник на 6, щоб звести дріб \frac{-6}{24} до нескоротного вигляду.
12x^{2}-5x-2=12\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{1}{4}\right)\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть \frac{2}{3} на x_{1} та -\frac{1}{4} на x_{2}.
12x^{2}-5x-2=12\left(x-\frac{2}{3}\right)\left(x+\frac{1}{4}\right)
Спростіть усі вирази виду p-\left(-q\right) до виразів виду p+q.
12x^{2}-5x-2=12\times \frac{3x-2}{3}\left(x+\frac{1}{4}\right)
Щоб відняти x від \frac{2}{3}, визначте спільний знаменник і обчисліть різницю чисельників. Далі по змозі зведіть дріб до нескоротного вигляду.
12x^{2}-5x-2=12\times \frac{3x-2}{3}\times \frac{4x+1}{4}
Щоб додати \frac{1}{4} до x, визначте спільний знаменник і підсумуйте чисельники. Далі по змозі зведіть дріб до нескоротного вигляду.
12x^{2}-5x-2=12\times \frac{\left(3x-2\right)\left(4x+1\right)}{3\times 4}
Щоб помножити \frac{3x-2}{3} на \frac{4x+1}{4}, помножте чисельник на чисельник і знаменник на знаменник. Далі по змозі зведіть дріб до нескоротного вигляду.
12x^{2}-5x-2=12\times \frac{\left(3x-2\right)\left(4x+1\right)}{12}
Помножте 3 на 4.
12x^{2}-5x-2=\left(3x-2\right)\left(4x+1\right)
Відкиньте 12, тобто найбільший спільний дільник для 12 й 12.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}