Перейти до основного контенту
Розкласти на множники
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=-12 ab=1\times 32=32
Розкладіть вираз на множники методом групування. Спочатку вираз потрібно переписати у вигляді x^{2}+ax+bx+32. Щоб знайти a та b, настройте систему для вирішено.
-1,-32 -2,-16 -4,-8
Оскільки ab додатне, a та b мають однаковий знак. Оскільки a+b від'ємне, a і b мають від’ємне значення. Наведіть усі пари цілих чисел, добуток яких дорівнює 32.
-1-32=-33 -2-16=-18 -4-8=-12
Обчисліть суму для кожної пари.
a=-8 b=-4
Розв’язком буде пара, що в сумі дорівнює -12.
\left(x^{2}-8x\right)+\left(-4x+32\right)
Перепишіть x^{2}-12x+32 як \left(x^{2}-8x\right)+\left(-4x+32\right).
x\left(x-8\right)-4\left(x-8\right)
x на першій та -4 в друге групу.
\left(x-8\right)\left(x-4\right)
Винесіть за дужки спільний член x-8, використовуючи властивість дистрибутивності.
x^{2}-12x+32=0
Квадратний многочлен можна розкласти на співмножники за допомогою перетворення ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), де x_{1} і x_{2} – розв’язки квадратного рівняння ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
Піднесіть -12 до квадрата.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Помножте -4 на 32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
Додайте 144 до -128.
x=\frac{-\left(-12\right)±4}{2}
Видобудьте квадратний корінь із 16.
x=\frac{12±4}{2}
Число, протилежне до -12, дорівнює 12.
x=\frac{16}{2}
Тепер розв’яжіть рівняння x=\frac{12±4}{2} за додатного значення ±. Додайте 12 до 4.
x=8
Розділіть 16 на 2.
x=\frac{8}{2}
Тепер розв’яжіть рівняння x=\frac{12±4}{2} за від’ємного значення ±. Відніміть 4 від 12.
x=4
Розділіть 8 на 2.
x^{2}-12x+32=\left(x-8\right)\left(x-4\right)
Розкладіть вихідний вираз на множники за принципом ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Замініть 8 на x_{1} та 4 на x_{2}.