Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

x^{2}-4x-5=0
Перенесіть усі змінні члени до лівої частини рівняння.
a+b=-4 ab=-5
Щоб розв'язати рівняння, x^{2}-4x-5 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
a=-5 b=1
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Єдиною такою парою буде розв’язок системи рівнянь.
\left(x-5\right)\left(x+1\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=5 x=-1
Щоб знайти рішення для формул, Розв'яжіть x-5=0 та x+1=0.
x^{2}-4x-5=0
Перенесіть усі змінні члени до лівої частини рівняння.
a+b=-4 ab=1\left(-5\right)=-5
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx-5. Щоб знайти a та b, настройте систему для вирішено.
a=-5 b=1
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Єдиною такою парою буде розв’язок системи рівнянь.
\left(x^{2}-5x\right)+\left(x-5\right)
Перепишіть x^{2}-4x-5 як \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Винесіть за дужки x в x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Винесіть за дужки спільний член x-5, використовуючи властивість дистрибутивності.
x=5 x=-1
Щоб знайти рішення для формул, Розв'яжіть x-5=0 та x+1=0.
x^{2}-4x-5=0
Перенесіть усі змінні члени до лівої частини рівняння.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -4 замість b і -5 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Піднесіть -4 до квадрата.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Помножте -4 на -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Додайте 16 до 20.
x=\frac{-\left(-4\right)±6}{2}
Видобудьте квадратний корінь із 36.
x=\frac{4±6}{2}
Число, протилежне до -4, дорівнює 4.
x=\frac{10}{2}
Тепер розв’яжіть рівняння x=\frac{4±6}{2} за додатного значення ±. Додайте 4 до 6.
x=5
Розділіть 10 на 2.
x=-\frac{2}{2}
Тепер розв’яжіть рівняння x=\frac{4±6}{2} за від’ємного значення ±. Відніміть 6 від 4.
x=-1
Розділіть -2 на 2.
x=5 x=-1
Тепер рівняння розв’язано.
x^{2}-4x-5=0
Перенесіть усі змінні члени до лівої частини рівняння.
x^{2}-4x=5
Додайте 5 до обох сторін. Якщо додати нуль до будь-якого числа, воно не зміниться.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Поділіть -4 (коефіцієнт члена x) на 2, щоб отримати -2. Потім додайте -2 у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-4x+4=5+4
Піднесіть -2 до квадрата.
x^{2}-4x+4=9
Додайте 5 до 4.
\left(x-2\right)^{2}=9
Розкладіть x^{2}-4x+4 на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Видобудьте квадратний корінь з обох сторін рівняння.
x-2=3 x-2=-3
Виконайте спрощення.
x=5 x=-1
Додайте 2 до обох сторін цього рівняння.