Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за y
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

\left(y^{-2}\right)^{-3}
Скористайтеся правилами для степенів, щоб спростити вираз.
y^{-2\left(-3\right)}
Щоб піднести до степеня іншу степінь, перемножте показники.
y^{6}
Помножте -2 на -3.
-3\left(y^{-2}\right)^{-3-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{-2})
Якщо F – складна функція з двох диференційовних функцій f\left(u\right) і u=g\left(x\right), тобто F\left(x\right)=f\left(g\left(x\right)\right), то похідна F дорівнює похідній f за u, помноженій на похідну g за x: \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-3\left(y^{-2}\right)^{-4}\left(-2\right)y^{-2-1}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
6y^{-3}\left(y^{-2}\right)^{-4}
Виконайте спрощення.