Знайти x
x\geq \frac{11}{5}
Графік
Ділити
Скопійовано в буфер обміну
2x^{2}-9x-5\leq 2\left(x+2\right)\left(x-4\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 2x+1 на x-5 і звести подібні члени.
2x^{2}-9x-5\leq \left(2x+4\right)\left(x-4\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 2 на x+2.
2x^{2}-9x-5\leq 2x^{2}-4x-16
Скористайтеся властивістю дистрибутивності, щоб помножити 2x+4 на x-4 і звести подібні члени.
2x^{2}-9x-5-2x^{2}\leq -4x-16
Відніміть 2x^{2} з обох сторін.
-9x-5\leq -4x-16
Додайте 2x^{2} до -2x^{2}, щоб отримати 0.
-9x-5+4x\leq -16
Додайте 4x до обох сторін.
-5x-5\leq -16
Додайте -9x до 4x, щоб отримати -5x.
-5x\leq -16+5
Додайте 5 до обох сторін.
-5x\leq -11
Додайте -16 до 5, щоб обчислити -11.
x\geq \frac{-11}{-5}
Розділіть обидві сторони на -5. Оскільки -5 від'ємне, нерівність напрямок.
x\geq \frac{11}{5}
Дріб \frac{-11}{-5} можна спростити до \frac{11}{5}, вилучивши знак "мінус" із чисельника та знаменника.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}