Перейти до основного контенту
Обчислити
Tick mark Image
Розкласти
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Скористайтеся біномом Ньютона \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, щоб розкрити дужки в \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Щоб піднести до степеня іншу степінь, перемножте показники. Помножте 2 і 2, щоб отримати 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Розкладіть \left(-2a^{2}\right)^{2}
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Щоб піднести до степеня іншу степінь, перемножте показники. Помножте 2 і 2, щоб отримати 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Обчисліть -2 у степені 2 і отримайте 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Помножте 2 на 4, щоб отримати 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Додайте 4a^{4} до -8a^{4}, щоб отримати -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Розкладіть \left(\frac{1}{2}b\right)^{2}
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Обчисліть \frac{1}{2} у степені 2 і отримайте \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Щоб знайти добуток степенів з однаковими основами, додайте їхні показники. Додайте 2 до 1, щоб отримати 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Скористайтеся біномом Ньютона \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, щоб розкрити дужки в \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Щоб піднести до степеня іншу степінь, перемножте показники. Помножте 2 і 2, щоб отримати 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Помножте -1 на \frac{1}{4}, щоб отримати -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Додайте -4a^{4} до 4a^{4}, щоб отримати 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Додайте 4a^{2}b до -4a^{2}b, щоб отримати 0.
2b^{2}-\frac{1}{4}b^{3}
Додайте b^{2} до b^{2}, щоб отримати 2b^{2}.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Скористайтеся біномом Ньютона \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, щоб розкрити дужки в \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Щоб піднести до степеня іншу степінь, перемножте показники. Помножте 2 і 2, щоб отримати 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Розкладіть \left(-2a^{2}\right)^{2}
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Щоб піднести до степеня іншу степінь, перемножте показники. Помножте 2 і 2, щоб отримати 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Обчисліть -2 у степені 2 і отримайте 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Помножте 2 на 4, щоб отримати 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Додайте 4a^{4} до -8a^{4}, щоб отримати -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Розкладіть \left(\frac{1}{2}b\right)^{2}
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Обчисліть \frac{1}{2} у степені 2 і отримайте \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Щоб знайти добуток степенів з однаковими основами, додайте їхні показники. Додайте 2 до 1, щоб отримати 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Скористайтеся біномом Ньютона \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, щоб розкрити дужки в \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Щоб піднести до степеня іншу степінь, перемножте показники. Помножте 2 і 2, щоб отримати 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Помножте -1 на \frac{1}{4}, щоб отримати -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Додайте -4a^{4} до 4a^{4}, щоб отримати 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Додайте 4a^{2}b до -4a^{2}b, щоб отримати 0.
2b^{2}-\frac{1}{4}b^{3}
Додайте b^{2} до b^{2}, щоб отримати 2b^{2}.