Знайдіть x (complex solution)
\left\{\begin{matrix}x=-\frac{y+z}{yz+1}\text{, }&z=0\text{ or }y\neq -\frac{1}{z}\\x\in \mathrm{C}\text{, }&\left(y=1\text{ and }z=-1\right)\text{ or }\left(y=-1\text{ and }z=1\right)\end{matrix}\right,
Знайдіть y (complex solution)
\left\{\begin{matrix}y=-\frac{x+z}{xz+1}\text{, }&z=0\text{ or }x\neq -\frac{1}{z}\\y\in \mathrm{C}\text{, }&\left(x=1\text{ and }z=-1\right)\text{ or }\left(x=-1\text{ and }z=1\right)\end{matrix}\right,
Знайдіть x
\left\{\begin{matrix}x=-\frac{y+z}{yz+1}\text{, }&z=0\text{ or }y\neq -\frac{1}{z}\\x\in \mathrm{R}\text{, }&\left(y=1\text{ and }z=-1\right)\text{ or }\left(y=-1\text{ and }z=1\right)\end{matrix}\right,
Знайдіть y
\left\{\begin{matrix}y=-\frac{x+z}{xz+1}\text{, }&z=0\text{ or }x\neq -\frac{1}{z}\\y\in \mathrm{R}\text{, }&\left(x=1\text{ and }z=-1\right)\text{ or }\left(x=-1\text{ and }z=1\right)\end{matrix}\right,
Вікторина
Linear Equation
5 проблеми, схожі на:
( 1 + x ) ( 1 + y ) ( 1 + z ) = ( 1 - x ) ( 1 - y ) ( 1 - z )
Ділити
Скопійовано в буфер обміну
\left(1+y+x+xy\right)\left(1+z\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+x на 1+y.
1+z+y+yz+x+xz+xy+xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+y+x+xy на 1+z.
1+z+y+yz+x+xz+xy+xyz=\left(1-y-x+xy\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1-x на 1-y.
1+z+y+yz+x+xz+xy+xyz=1-z-y+yz-x+xz+xy-xyz
Скористайтеся властивістю дистрибутивності, щоб помножити 1-y-x+xy на 1-z.
1+z+y+yz+x+xz+xy+xyz+x=1-z-y+yz+xz+xy-xyz
Додайте x до обох сторін.
1+z+y+yz+2x+xz+xy+xyz=1-z-y+yz+xz+xy-xyz
Додайте x до x, щоб отримати 2x.
1+z+y+yz+2x+xz+xy+xyz-xz=1-z-y+yz+xy-xyz
Відніміть xz з обох сторін.
1+z+y+yz+2x+xy+xyz=1-z-y+yz+xy-xyz
Додайте xz до -xz, щоб отримати 0.
1+z+y+yz+2x+xy+xyz-xy=1-z-y+yz-xyz
Відніміть xy з обох сторін.
1+z+y+yz+2x+xyz=1-z-y+yz-xyz
Додайте xy до -xy, щоб отримати 0.
1+z+y+yz+2x+xyz+xyz=1-z-y+yz
Додайте xyz до обох сторін.
1+z+y+yz+2x+2xyz=1-z-y+yz
Додайте xyz до xyz, щоб отримати 2xyz.
z+y+yz+2x+2xyz=1-z-y+yz-1
Відніміть 1 з обох сторін.
z+y+yz+2x+2xyz=-z-y+yz
Відніміть 1 від 1, щоб отримати 0.
y+yz+2x+2xyz=-z-y+yz-z
Відніміть z з обох сторін.
y+yz+2x+2xyz=-2z-y+yz
Додайте -z до -z, щоб отримати -2z.
yz+2x+2xyz=-2z-y+yz-y
Відніміть y з обох сторін.
yz+2x+2xyz=-2z-2y+yz
Додайте -y до -y, щоб отримати -2y.
2x+2xyz=-2z-2y+yz-yz
Відніміть yz з обох сторін.
2x+2xyz=-2z-2y
Додайте yz до -yz, щоб отримати 0.
\left(2+2yz\right)x=-2z-2y
Зведіть усі члени, що містять x.
\left(2yz+2\right)x=-2y-2z
Рівняння має стандартну форму.
\frac{\left(2yz+2\right)x}{2yz+2}=\frac{-2y-2z}{2yz+2}
Розділіть обидві сторони на 2yz+2.
x=\frac{-2y-2z}{2yz+2}
Ділення на 2yz+2 скасовує множення на 2yz+2.
x=-\frac{y+z}{yz+1}
Розділіть -2z-2y на 2yz+2.
\left(1+y+x+xy\right)\left(1+z\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+x на 1+y.
1+z+y+yz+x+xz+xy+xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+y+x+xy на 1+z.
1+z+y+yz+x+xz+xy+xyz=\left(1-y-x+xy\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1-x на 1-y.
1+z+y+yz+x+xz+xy+xyz=1-z-y+yz-x+xz+xy-xyz
Скористайтеся властивістю дистрибутивності, щоб помножити 1-y-x+xy на 1-z.
1+z+y+yz+x+xz+xy+xyz+y=1-z+yz-x+xz+xy-xyz
Додайте y до обох сторін.
1+z+2y+yz+x+xz+xy+xyz=1-z+yz-x+xz+xy-xyz
Додайте y до y, щоб отримати 2y.
1+z+2y+yz+x+xz+xy+xyz-yz=1-z-x+xz+xy-xyz
Відніміть yz з обох сторін.
1+z+2y+x+xz+xy+xyz=1-z-x+xz+xy-xyz
Додайте yz до -yz, щоб отримати 0.
1+z+2y+x+xz+xy+xyz-xy=1-z-x+xz-xyz
Відніміть xy з обох сторін.
1+z+2y+x+xz+xyz=1-z-x+xz-xyz
Додайте xy до -xy, щоб отримати 0.
1+z+2y+x+xz+xyz+xyz=1-z-x+xz
Додайте xyz до обох сторін.
1+z+2y+x+xz+2xyz=1-z-x+xz
Додайте xyz до xyz, щоб отримати 2xyz.
z+2y+x+xz+2xyz=1-z-x+xz-1
Відніміть 1 з обох сторін.
z+2y+x+xz+2xyz=-z-x+xz
Відніміть 1 від 1, щоб отримати 0.
2y+x+xz+2xyz=-z-x+xz-z
Відніміть z з обох сторін.
2y+x+xz+2xyz=-2z-x+xz
Додайте -z до -z, щоб отримати -2z.
2y+xz+2xyz=-2z-x+xz-x
Відніміть x з обох сторін.
2y+xz+2xyz=-2z-2x+xz
Додайте -x до -x, щоб отримати -2x.
2y+2xyz=-2z-2x+xz-xz
Відніміть xz з обох сторін.
2y+2xyz=-2z-2x
Додайте xz до -xz, щоб отримати 0.
\left(2+2xz\right)y=-2z-2x
Зведіть усі члени, що містять y.
\left(2xz+2\right)y=-2x-2z
Рівняння має стандартну форму.
\frac{\left(2xz+2\right)y}{2xz+2}=\frac{-2x-2z}{2xz+2}
Розділіть обидві сторони на 2xz+2.
y=\frac{-2x-2z}{2xz+2}
Ділення на 2xz+2 скасовує множення на 2xz+2.
y=-\frac{x+z}{xz+1}
Розділіть -2z-2x на 2xz+2.
\left(1+y+x+xy\right)\left(1+z\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+x на 1+y.
1+z+y+yz+x+xz+xy+xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+y+x+xy на 1+z.
1+z+y+yz+x+xz+xy+xyz=\left(1-y-x+xy\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1-x на 1-y.
1+z+y+yz+x+xz+xy+xyz=1-z-y+yz-x+xz+xy-xyz
Скористайтеся властивістю дистрибутивності, щоб помножити 1-y-x+xy на 1-z.
1+z+y+yz+x+xz+xy+xyz+x=1-z-y+yz+xz+xy-xyz
Додайте x до обох сторін.
1+z+y+yz+2x+xz+xy+xyz=1-z-y+yz+xz+xy-xyz
Додайте x до x, щоб отримати 2x.
1+z+y+yz+2x+xz+xy+xyz-xz=1-z-y+yz+xy-xyz
Відніміть xz з обох сторін.
1+z+y+yz+2x+xy+xyz=1-z-y+yz+xy-xyz
Додайте xz до -xz, щоб отримати 0.
1+z+y+yz+2x+xy+xyz-xy=1-z-y+yz-xyz
Відніміть xy з обох сторін.
1+z+y+yz+2x+xyz=1-z-y+yz-xyz
Додайте xy до -xy, щоб отримати 0.
1+z+y+yz+2x+xyz+xyz=1-z-y+yz
Додайте xyz до обох сторін.
1+z+y+yz+2x+2xyz=1-z-y+yz
Додайте xyz до xyz, щоб отримати 2xyz.
z+y+yz+2x+2xyz=1-z-y+yz-1
Відніміть 1 з обох сторін.
z+y+yz+2x+2xyz=-z-y+yz
Відніміть 1 від 1, щоб отримати 0.
y+yz+2x+2xyz=-z-y+yz-z
Відніміть z з обох сторін.
y+yz+2x+2xyz=-2z-y+yz
Додайте -z до -z, щоб отримати -2z.
yz+2x+2xyz=-2z-y+yz-y
Відніміть y з обох сторін.
yz+2x+2xyz=-2z-2y+yz
Додайте -y до -y, щоб отримати -2y.
2x+2xyz=-2z-2y+yz-yz
Відніміть yz з обох сторін.
2x+2xyz=-2z-2y
Додайте yz до -yz, щоб отримати 0.
\left(2+2yz\right)x=-2z-2y
Зведіть усі члени, що містять x.
\left(2yz+2\right)x=-2y-2z
Рівняння має стандартну форму.
\frac{\left(2yz+2\right)x}{2yz+2}=\frac{-2y-2z}{2yz+2}
Розділіть обидві сторони на 2yz+2.
x=\frac{-2y-2z}{2yz+2}
Ділення на 2yz+2 скасовує множення на 2yz+2.
x=-\frac{y+z}{yz+1}
Розділіть -2z-2y на 2yz+2.
\left(1+y+x+xy\right)\left(1+z\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+x на 1+y.
1+z+y+yz+x+xz+xy+xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1+y+x+xy на 1+z.
1+z+y+yz+x+xz+xy+xyz=\left(1-y-x+xy\right)\left(1-z\right)
Скористайтеся властивістю дистрибутивності, щоб помножити 1-x на 1-y.
1+z+y+yz+x+xz+xy+xyz=1-z-y+yz-x+xz+xy-xyz
Скористайтеся властивістю дистрибутивності, щоб помножити 1-y-x+xy на 1-z.
1+z+y+yz+x+xz+xy+xyz+y=1-z+yz-x+xz+xy-xyz
Додайте y до обох сторін.
1+z+2y+yz+x+xz+xy+xyz=1-z+yz-x+xz+xy-xyz
Додайте y до y, щоб отримати 2y.
1+z+2y+yz+x+xz+xy+xyz-yz=1-z-x+xz+xy-xyz
Відніміть yz з обох сторін.
1+z+2y+x+xz+xy+xyz=1-z-x+xz+xy-xyz
Додайте yz до -yz, щоб отримати 0.
1+z+2y+x+xz+xy+xyz-xy=1-z-x+xz-xyz
Відніміть xy з обох сторін.
1+z+2y+x+xz+xyz=1-z-x+xz-xyz
Додайте xy до -xy, щоб отримати 0.
1+z+2y+x+xz+xyz+xyz=1-z-x+xz
Додайте xyz до обох сторін.
1+z+2y+x+xz+2xyz=1-z-x+xz
Додайте xyz до xyz, щоб отримати 2xyz.
z+2y+x+xz+2xyz=1-z-x+xz-1
Відніміть 1 з обох сторін.
z+2y+x+xz+2xyz=-z-x+xz
Відніміть 1 від 1, щоб отримати 0.
2y+x+xz+2xyz=-z-x+xz-z
Відніміть z з обох сторін.
2y+x+xz+2xyz=-2z-x+xz
Додайте -z до -z, щоб отримати -2z.
2y+xz+2xyz=-2z-x+xz-x
Відніміть x з обох сторін.
2y+xz+2xyz=-2z-2x+xz
Додайте -x до -x, щоб отримати -2x.
2y+2xyz=-2z-2x+xz-xz
Відніміть xz з обох сторін.
2y+2xyz=-2z-2x
Додайте xz до -xz, щоб отримати 0.
\left(2+2xz\right)y=-2z-2x
Зведіть усі члени, що містять y.
\left(2xz+2\right)y=-2x-2z
Рівняння має стандартну форму.
\frac{\left(2xz+2\right)y}{2xz+2}=\frac{-2x-2z}{2xz+2}
Розділіть обидві сторони на 2xz+2.
y=\frac{-2x-2z}{2xz+2}
Ділення на 2xz+2 скасовує множення на 2xz+2.
y=-\frac{x+z}{xz+1}
Розділіть -2z-2x на 2xz+2.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}