Знайдіть x
x=-1
x=1
Знайдіть x (complex solution)
x=i
x=-i
x=-1
x=1
Графік
Ділити
Скопійовано в буфер обміну
x^{6}+1-x^{4}=x^{2}
Відніміть x^{4} з обох сторін.
x^{6}+1-x^{4}-x^{2}=0
Відніміть x^{2} з обох сторін.
x^{6}-x^{4}-x^{2}+1=0
Упорядкуйте рівняння, щоб привести його до стандартного вигляду. Розташуйте члени в порядку від найвищого степеня до найнижчого.
±1
За теоремою про раціональні корені всі раціональні корені многочлена мають вигляд \frac{p}{q}, де p ділить вільний член 1, а q ділить старший коефіцієнт многочлена 1. Перелічіть всі можливі \frac{p}{q}.
x=1
Знайдіть один такий корінь, перебравши всі цілі значення, починаючи з найменшого за модулем. Якщо не вдалося знайти жодного цілого кореня, спробуйте дроби.
x^{5}+x^{4}-x-1=0
За допомогою Ньютона, x-k – це коефіцієнт полінома для кожного кореневого k. Розділіть x^{6}-x^{4}-x^{2}+1 на x-1, щоб отримати x^{5}+x^{4}-x-1. Розв'яжіть рівняння, у якій результат дорівнює 0.
±1
За теоремою про раціональні корені всі раціональні корені многочлена мають вигляд \frac{p}{q}, де p ділить вільний член -1, а q ділить старший коефіцієнт многочлена 1. Перелічіть всі можливі \frac{p}{q}.
x=1
Знайдіть один такий корінь, перебравши всі цілі значення, починаючи з найменшого за модулем. Якщо не вдалося знайти жодного цілого кореня, спробуйте дроби.
x^{4}+2x^{3}+2x^{2}+2x+1=0
За допомогою Ньютона, x-k – це коефіцієнт полінома для кожного кореневого k. Розділіть x^{5}+x^{4}-x-1 на x-1, щоб отримати x^{4}+2x^{3}+2x^{2}+2x+1. Розв'яжіть рівняння, у якій результат дорівнює 0.
±1
За теоремою про раціональні корені всі раціональні корені многочлена мають вигляд \frac{p}{q}, де p ділить вільний член 1, а q ділить старший коефіцієнт многочлена 1. Перелічіть всі можливі \frac{p}{q}.
x=-1
Знайдіть один такий корінь, перебравши всі цілі значення, починаючи з найменшого за модулем. Якщо не вдалося знайти жодного цілого кореня, спробуйте дроби.
x^{3}+x^{2}+x+1=0
За допомогою Ньютона, x-k – це коефіцієнт полінома для кожного кореневого k. Розділіть x^{4}+2x^{3}+2x^{2}+2x+1 на x+1, щоб отримати x^{3}+x^{2}+x+1. Розв'яжіть рівняння, у якій результат дорівнює 0.
±1
За теоремою про раціональні корені всі раціональні корені многочлена мають вигляд \frac{p}{q}, де p ділить вільний член 1, а q ділить старший коефіцієнт многочлена 1. Перелічіть всі можливі \frac{p}{q}.
x=-1
Знайдіть один такий корінь, перебравши всі цілі значення, починаючи з найменшого за модулем. Якщо не вдалося знайти жодного цілого кореня, спробуйте дроби.
x^{2}+1=0
За допомогою Ньютона, x-k – це коефіцієнт полінома для кожного кореневого k. Розділіть x^{3}+x^{2}+x+1 на x+1, щоб отримати x^{2}+1. Розв'яжіть рівняння, у якій результат дорівнює 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
Усі рівняння вигляду ax^{2}+bx+c=0 можна вирішити за допомогою загальної формули для квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замініть у цій формулі 1 на a, 0 – на b, а 1 – на c.
x=\frac{0±\sqrt{-4}}{2}
Виконайте арифметичні операції.
x\in \emptyset
Оскільки квадратний корінь із від’ємного числа не визначений на множині дійсних чисел, розв’язку немає.
x=1 x=-1
Список усіх знайдених рішень.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}