Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=-1 ab=-6
Щоб розв'язати рівняння, x^{2}-x-6 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
1,-6 2,-3
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює -6.
1-6=-5 2-3=-1
Обчисліть суму для кожної пари.
a=-3 b=2
Розв’язком буде пара, що в сумі дорівнює -1.
\left(x-3\right)\left(x+2\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=3 x=-2
Щоб знайти рішення для формул, Розв'яжіть x-3=0 та x+2=0.
a+b=-1 ab=1\left(-6\right)=-6
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx-6. Щоб знайти a та b, настройте систему для вирішено.
1,-6 2,-3
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b від’ємне, від’ємне число за модулем більше за додатне. Наведіть усі пари цілих чисел, добуток яких дорівнює -6.
1-6=-5 2-3=-1
Обчисліть суму для кожної пари.
a=-3 b=2
Розв’язком буде пара, що в сумі дорівнює -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Перепишіть x^{2}-x-6 як \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
x на першій та 2 в друге групу.
\left(x-3\right)\left(x+2\right)
Винесіть за дужки спільний член x-3, використовуючи властивість дистрибутивності.
x=3 x=-2
Щоб знайти рішення для формул, Розв'яжіть x-3=0 та x+2=0.
x^{2}-x-6=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -1 замість b і -6 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Помножте -4 на -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Додайте 1 до 24.
x=\frac{-\left(-1\right)±5}{2}
Видобудьте квадратний корінь із 25.
x=\frac{1±5}{2}
Число, протилежне до -1, дорівнює 1.
x=\frac{6}{2}
Тепер розв’яжіть рівняння x=\frac{1±5}{2} за додатного значення ±. Додайте 1 до 5.
x=3
Розділіть 6 на 2.
x=-\frac{4}{2}
Тепер розв’яжіть рівняння x=\frac{1±5}{2} за від’ємного значення ±. Відніміть 5 від 1.
x=-2
Розділіть -4 на 2.
x=3 x=-2
Тепер рівняння розв’язано.
x^{2}-x-6=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
x^{2}-x-6-\left(-6\right)=-\left(-6\right)
Додайте 6 до обох сторін цього рівняння.
x^{2}-x=-\left(-6\right)
Якщо відняти -6 від самого себе, залишиться 0.
x^{2}-x=6
Відніміть -6 від 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Поділіть -1 (коефіцієнт члена x) на 2, щоб отримати -\frac{1}{2}. Потім додайте -\frac{1}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Щоб піднести -\frac{1}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Додайте 6 до \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Розкладіть x^{2}-x+\frac{1}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Виконайте спрощення.
x=3 x=-2
Додайте \frac{1}{2} до обох сторін цього рівняння.