Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

a+b=-6 ab=9
Щоб вирішити рівняння, розкладіть x^{2}-6x+9 на множники за допомогою формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, налаштуйте систему, яку потрібно розв'язати.
-1,-9 -3,-3
Оскільки ab додатне, a і b мають однаковий знак. Оскільки a+b від'ємне, a і b є негативними. Наведіть усі пари цілих чисел, добуток яких дорівнює 9.
-1-9=-10 -3-3=-6
Обчисліть суму для кожної пари.
a=-3 b=-3
Розв’язком буде пара, що в сумі дорівнює -6.
\left(x-3\right)\left(x-3\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
\left(x-3\right)^{2}
Перепишіть у вигляді квадрата двочлена.
x=3
Щоб знайти розв’язок рівняння, обчисліть x-3=0.
a+b=-6 ab=1\times 9=9
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx+9. Щоб знайти a та b, налаштуйте систему, яку потрібно розв'язати.
-1,-9 -3,-3
Оскільки ab додатне, a і b мають однаковий знак. Оскільки a+b від'ємне, a і b є негативними. Наведіть усі пари цілих чисел, добуток яких дорівнює 9.
-1-9=-10 -3-3=-6
Обчисліть суму для кожної пари.
a=-3 b=-3
Розв’язком буде пара, що в сумі дорівнює -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Перепишіть x^{2}-6x+9 як \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Винесіть за дужки x в першій і -3 у другій групі.
\left(x-3\right)\left(x-3\right)
Винесіть за дужки спільний член x-3, використовуючи властивість дистрибутивності.
\left(x-3\right)^{2}
Перепишіть у вигляді квадрата двочлена.
x=3
Щоб знайти розв’язок рівняння, обчисліть x-3=0.
x^{2}-6x+9=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -6 замість b і 9 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Піднесіть -6 до квадрата.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Помножте -4 на 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Додайте 36 до -36.
x=-\frac{-6}{2}
Видобудьте квадратний корінь із 0.
x=\frac{6}{2}
Число, протилежне до -6, дорівнює 6.
x=3
Розділіть 6 на 2.
x^{2}-6x+9=0
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
\left(x-3\right)^{2}=0
Розкладіть x^{2}-6x+9 на множники. Якщо многочлен x^{2}+bx+c становить квадратне число, зазвичай його можна розкласти на множники таким чином: \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Видобудьте квадратний корінь з обох сторін рівняння.
x-3=0 x-3=0
Виконайте спрощення.
x=3 x=3
Додайте 3 до обох сторін цього рівняння.
x=3
Тепер рівняння розв’язано. Розв’язки збігаються.