Знайдіть x
x=3
x=-5
Графік
Ділити
Скопійовано в буфер обміну
x^{2}+2x+1=16
Скористайтеся біномом Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, щоб розкрити дужки в \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Відніміть 16 з обох сторін.
x^{2}+2x-15=0
Відніміть 16 від 1, щоб отримати -15.
a+b=2 ab=-15
Щоб розв'язати рівняння, x^{2}+2x-15 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
-1,15 -3,5
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -15.
-1+15=14 -3+5=2
Обчисліть суму для кожної пари.
a=-3 b=5
Розв’язком буде пара, що в сумі дорівнює 2.
\left(x-3\right)\left(x+5\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=3 x=-5
Щоб знайти рішення для формул, Розв'яжіть x-3=0 та x+5=0.
x^{2}+2x+1=16
Скористайтеся біномом Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, щоб розкрити дужки в \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Відніміть 16 з обох сторін.
x^{2}+2x-15=0
Відніміть 16 від 1, щоб отримати -15.
a+b=2 ab=1\left(-15\right)=-15
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx-15. Щоб знайти a та b, настройте систему для вирішено.
-1,15 -3,5
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -15.
-1+15=14 -3+5=2
Обчисліть суму для кожної пари.
a=-3 b=5
Розв’язком буде пара, що в сумі дорівнює 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Перепишіть x^{2}+2x-15 як \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
x на першій та 5 в друге групу.
\left(x-3\right)\left(x+5\right)
Винесіть за дужки спільний член x-3, використовуючи властивість дистрибутивності.
x=3 x=-5
Щоб знайти рішення для формул, Розв'яжіть x-3=0 та x+5=0.
x^{2}+2x+1=16
Скористайтеся біномом Ньютона \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, щоб розкрити дужки в \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Відніміть 16 з обох сторін.
x^{2}+2x-15=0
Відніміть 16 від 1, щоб отримати -15.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, 2 замість b і -15 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Піднесіть 2 до квадрата.
x=\frac{-2±\sqrt{4+60}}{2}
Помножте -4 на -15.
x=\frac{-2±\sqrt{64}}{2}
Додайте 4 до 60.
x=\frac{-2±8}{2}
Видобудьте квадратний корінь із 64.
x=\frac{6}{2}
Тепер розв’яжіть рівняння x=\frac{-2±8}{2} за додатного значення ±. Додайте -2 до 8.
x=3
Розділіть 6 на 2.
x=-\frac{10}{2}
Тепер розв’яжіть рівняння x=\frac{-2±8}{2} за від’ємного значення ±. Відніміть 8 від -2.
x=-5
Розділіть -10 на 2.
x=3 x=-5
Тепер рівняння розв’язано.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Видобудьте квадратний корінь з обох сторін рівняння.
x+1=4 x+1=-4
Виконайте спрощення.
x=3 x=-5
Відніміть 1 від обох сторін цього рівняння.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}