Перейти до основного контенту
Обчислити визначник
Tick mark Image
Обчислити
Tick mark Image

Ділити

det(\left(\begin{matrix}9&8&7\\6&5&4\\3&2&1\end{matrix}\right))
Знайдіть визначник матриці за допомогою правила діагоналей.
\left(\begin{matrix}9&8&7&9&8\\6&5&4&6&5\\3&2&1&3&2\end{matrix}\right)
Доповніть вихідну матрицю першими двома стовпцями на місці четвертого та п’ятого.
9\times 5+8\times 4\times 3+7\times 6\times 2=225
Починаючи з верхнього лівого елемента, перемножте елементи вздовж діагоналей за напрямком униз і підсумуйте отримані добутки.
3\times 5\times 7+2\times 4\times 9+6\times 8=225
Починаючи з нижнього лівого елемента, перемножайте елементи вздовж діагоналей за напрямком угору та підсумовуйте отримані добутки.
225-225
Відніміть суму добутків елементів висхідних діагоналей від суми добутків елементів спадних діагоналей.
0
Відніміть 225 від 225.
det(\left(\begin{matrix}9&8&7\\6&5&4\\3&2&1\end{matrix}\right))
Знайдіть визначник матриці за допомогою розкладення на мінори (цей метод також називається розкладанням за алгебраїчними доповненнями).
9det(\left(\begin{matrix}5&4\\2&1\end{matrix}\right))-8det(\left(\begin{matrix}6&4\\3&1\end{matrix}\right))+7det(\left(\begin{matrix}6&5\\3&2\end{matrix}\right))
Щоб розкласти матрицю за мінорами, помножте кожен її елемент першого рядка на відповідний мінор (це визначник матриці 2\times 2, яку можна отримати, викресливши рядок і стовпець, що містять цей елемент) і на знак, який відповідає розташуванню елемента.
9\left(5-2\times 4\right)-8\left(6-3\times 4\right)+7\left(6\times 2-3\times 5\right)
Для \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матриці 2\times 2 визначник ad-bc.
9\left(-3\right)-8\left(-6\right)+7\left(-3\right)
Виконайте спрощення.
0
Обчисліть суму членів, щоб отримати кінцевий результат.