\left| \begin{array} { c c c } { 1 } & { - 16 } & { 19 } \\ { 7 } & { - 6 } & { 13 } \\ { 3 } & { 6 } & { 4 } \end{array} \right|
Обчислити
862
Розкласти на множники
2\times 431
Ділити
Скопійовано в буфер обміну
det(\left(\begin{matrix}1&-16&19\\7&-6&13\\3&6&4\end{matrix}\right))
Знайдіть визначник матриці за допомогою правила діагоналей.
\left(\begin{matrix}1&-16&19&1&-16\\7&-6&13&7&-6\\3&6&4&3&6\end{matrix}\right)
Доповніть вихідну матрицю першими двома стовпцями на місці четвертого та п’ятого.
-6\times 4-16\times 13\times 3+19\times 7\times 6=150
Починаючи з верхнього лівого елемента, перемножте елементи вздовж діагоналей за напрямком униз і підсумуйте отримані добутки.
3\left(-6\right)\times 19+6\times 13+4\times 7\left(-16\right)=-712
Починаючи з нижнього лівого елемента, перемножайте елементи вздовж діагоналей за напрямком угору та підсумовуйте отримані добутки.
150-\left(-712\right)
Відніміть суму добутків елементів висхідних діагоналей від суми добутків елементів спадних діагоналей.
862
Відніміть -712 від 150.
det(\left(\begin{matrix}1&-16&19\\7&-6&13\\3&6&4\end{matrix}\right))
Знайдіть визначник матриці за допомогою розкладення на мінори (цей метод також називається розкладанням за алгебраїчними доповненнями).
det(\left(\begin{matrix}-6&13\\6&4\end{matrix}\right))-\left(-16det(\left(\begin{matrix}7&13\\3&4\end{matrix}\right))\right)+19det(\left(\begin{matrix}7&-6\\3&6\end{matrix}\right))
Щоб розкласти матрицю за мінорами, помножте кожен її елемент першого рядка на відповідний мінор (це визначник матриці 2\times 2, яку можна отримати, викресливши рядок і стовпець, що містять цей елемент) і на знак, який відповідає розташуванню елемента.
-6\times 4-6\times 13-\left(-16\left(7\times 4-3\times 13\right)\right)+19\left(7\times 6-3\left(-6\right)\right)
Для \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матриці 2\times 2 визначник ad-bc.
-102-\left(-16\left(-11\right)\right)+19\times 60
Виконайте спрощення.
862
Обчисліть суму членів, щоб отримати кінцевий результат.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}