Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
Скористайтеся біномом Ньютона \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}, щоб розкрити дужки в \left(x+5\right)^{3}.
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
Скористайтеся властивістю дистрибутивності, щоб помножити x на x^{3}+15x^{2}+75x+125.
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
Інтегруйте суму почленно.
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{4}\mathrm{d}x з \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{3}\mathrm{d}x з \frac{x^{4}}{4}. Помножте 15 на \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{2}\mathrm{d}x з \frac{x^{3}}{3}. Помножте 75 на \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}. Помножте 125 на \frac{x^{2}}{2}.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
Виконайте спрощення.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
Якщо F\left(x\right) – це первісна f\left(x\right), а набір всіх antiderivatives f\left(x\right) надано F\left(x\right)+C. А потім додайте константи C\in \mathrm{R} інтеграції до результату.