Перейти до основного контенту
Обчислити
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\int _{0}^{3}25x^{2}-30x+9\mathrm{d}x
Скористайтеся біномом Ньютона \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, щоб розкрити дужки в \left(5x-3\right)^{2}.
\int 25x^{2}-30x+9\mathrm{d}x
Спочатку обчисліть невизначений інтеграл.
\int 25x^{2}\mathrm{d}x+\int -30x\mathrm{d}x+\int 9\mathrm{d}x
Інтегруйте суму почленно.
25\int x^{2}\mathrm{d}x-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
\frac{25x^{3}}{3}-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{2}\mathrm{d}x з \frac{x^{3}}{3}. Помножте 25 на \frac{x^{3}}{3}.
\frac{25x^{3}}{3}-15x^{2}+\int 9\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}. Помножте -30 на \frac{x^{2}}{2}.
\frac{25x^{3}}{3}-15x^{2}+9x
Знайдіть Інтеграл 9 за допомогою таблиці загального інтеграли правила \int a\mathrm{d}x=ax.
\frac{25}{3}\times 3^{3}-15\times 3^{2}+9\times 3-\left(\frac{25}{3}\times 0^{3}-15\times 0^{2}+9\times 0\right)
Визначений інтеграл дорівнює різниці значень первісної виразу, обчисленої для верхньої та нижньої меж інтегрування.
117
Виконайте спрощення.