Обчислити
-\frac{27}{2}=-13,5
Ділити
Скопійовано в буфер обміну
\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
Скористайтеся властивістю дистрибутивності: помножте кожен член 2x+3 на кожен член 3x-5.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
Додайте -10x до 9x, щоб отримати -x.
\int 6x^{2}-x-15\mathrm{d}x
Спочатку обчисліть невизначений інтеграл.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
Інтегруйте суму почленно.
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{2}\mathrm{d}x з \frac{x^{3}}{3}. Помножте 6 на \frac{x^{3}}{3}.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}. Помножте -1 на \frac{x^{2}}{2}.
2x^{3}-\frac{x^{2}}{2}-15x
Знайдіть Інтеграл -15 за допомогою таблиці загального інтеграли правила \int a\mathrm{d}x=ax.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
Визначений інтеграл дорівнює різниці значень первісної виразу, обчисленої для верхньої та нижньої меж інтегрування.
-\frac{27}{2}
Виконайте спрощення.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}