Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image

Схожі проблеми з веб-пошуком

Ділити

\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
Скористайтеся властивістю дистрибутивності, щоб помножити 4x^{7}+4x+4 на 28x^{6}+4 і звести подібні члени.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Інтегруйте суму почленно.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Винесіть константу за дужки в кожному зі членів.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{13}\mathrm{d}x з \frac{x^{14}}{14}. Помножте 112 на \frac{x^{14}}{14}.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{7}\mathrm{d}x з \frac{x^{8}}{8}. Помножте 128 на \frac{x^{8}}{8}.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x\mathrm{d}x з \frac{x^{2}}{2}. Помножте 16 на \frac{x^{2}}{2}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
Оскільки \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замініть \int x^{6}\mathrm{d}x з \frac{x^{7}}{7}. Помножте 112 на \frac{x^{7}}{7}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
Знайдіть Інтеграл 16 за допомогою таблиці загального інтеграли правила \int a\mathrm{d}x=ax.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Якщо F\left(x\right) – це первісна f\left(x\right), а набір всіх antiderivatives f\left(x\right) надано F\left(x\right)+C. А потім додайте константи C\in \mathrm{R} інтеграції до результату.