Перейти до основного контенту
Диференціювати за x
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

\frac{\left(6x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1})-7x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}+7)}{\left(6x^{1}+7\right)^{2}}
Для будь-яких двох диференційовних функцій похідна їхньої частки дорівнює дробу: різниця добутку знаменника на похідну чисельника та добутку чисельника на похідну знаменника, розділена на квадрат знаменника.
\frac{\left(6x^{1}+7\right)\times 7x^{1-1}-7x^{1}\times 6x^{1-1}}{\left(6x^{1}+7\right)^{2}}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
\frac{\left(6x^{1}+7\right)\times 7x^{0}-7x^{1}\times 6x^{0}}{\left(6x^{1}+7\right)^{2}}
Виконайте арифметичні операції.
\frac{6x^{1}\times 7x^{0}+7\times 7x^{0}-7x^{1}\times 6x^{0}}{\left(6x^{1}+7\right)^{2}}
Розкладіть за допомогою властивості дистрибутивності.
\frac{6\times 7x^{1}+7\times 7x^{0}-7\times 6x^{1}}{\left(6x^{1}+7\right)^{2}}
Щоб перемножити степені з однаковими основами, просто додайте їхні показники.
\frac{42x^{1}+49x^{0}-42x^{1}}{\left(6x^{1}+7\right)^{2}}
Виконайте арифметичні операції.
\frac{\left(42-42\right)x^{1}+49x^{0}}{\left(6x^{1}+7\right)^{2}}
Зведіть подібні члени.
\frac{49x^{0}}{\left(6x^{1}+7\right)^{2}}
Відніміть 42 від 42.
\frac{49x^{0}}{\left(6x+7\right)^{2}}
Для будь-якого члена t дійсне таке правило: t^{1}=t.
\frac{49\times 1}{\left(6x+7\right)^{2}}
Для будь-якого члена t, окрім 0, t^{0}=1.
\frac{49}{\left(6x+7\right)^{2}}
Для будь-якого члена t дійсне таке правило: t\times 1=t і 1t=t.