Знайти x
x\in \left(0,7\right)
Графік
Ділити
Скопійовано в буфер обміну
\frac{4\times 2}{10x}+\frac{x}{10x}<\frac{3}{2x}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел 5x та 10 – це 10x. Помножте \frac{4}{5x} на \frac{2}{2}. Помножте \frac{1}{10} на \frac{x}{x}.
\frac{4\times 2+x}{10x}<\frac{3}{2x}
Оскільки \frac{4\times 2}{10x} та \frac{x}{10x} мають однакову знаменник, додайте їх чисельників.
\frac{8+x}{10x}<\frac{3}{2x}
Виконайте множення у виразі 4\times 2+x.
\frac{8+x}{10x}-\frac{3}{2x}<0
Відніміть \frac{3}{2x} з обох сторін.
\frac{8+x}{10x}-\frac{3\times 5}{10x}<0
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел 10x та 2x – це 10x. Помножте \frac{3}{2x} на \frac{5}{5}.
\frac{8+x-3\times 5}{10x}<0
Оскільки знаменник дробів \frac{8+x}{10x} і \frac{3\times 5}{10x} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{8+x-15}{10x}<0
Виконайте множення у виразі 8+x-3\times 5.
\frac{-7+x}{10x}<0
Зведіть подібні члени у виразі 8+x-15.
x-7>0 10x<0
Щоб частка була від’ємною, x-7 і 10x мають бути протилежних знаків. Розглянемо випадок, коли x-7 має додатне значення, а 10x – від’ємне.
x\in \emptyset
Це не виконується для жодного значення x.
10x>0 x-7<0
Розглянемо випадок, коли 10x має додатне значення, а x-7 – від’ємне.
x\in \left(0,7\right)
Обидві нерівності мають такий розв’язок: x\in \left(0,7\right).
x\in \left(0,7\right)
Остаточний розв’язок – об’єднання отриманих розв’язків.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}