Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел x та x+1 – це x\left(x+1\right). Помножте \frac{7}{x} на \frac{x+1}{x+1}. Помножте \frac{6}{x+1} на \frac{x}{x}.
\frac{7\left(x+1\right)-6x}{x\left(x+1\right)}
Оскільки знаменник дробів \frac{7\left(x+1\right)}{x\left(x+1\right)} і \frac{6x}{x\left(x+1\right)} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{7x+7-6x}{x\left(x+1\right)}
Виконайте множення у виразі 7\left(x+1\right)-6x.
\frac{x+7}{x\left(x+1\right)}
Зведіть подібні члени у виразі 7x+7-6x.
\frac{x+7}{x^{2}+x}
Розкладіть x\left(x+1\right)
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)}{x\left(x+1\right)}-\frac{6x}{x\left(x+1\right)})
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел x та x+1 – це x\left(x+1\right). Помножте \frac{7}{x} на \frac{x+1}{x+1}. Помножте \frac{6}{x+1} на \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\left(x+1\right)-6x}{x\left(x+1\right)})
Оскільки знаменник дробів \frac{7\left(x+1\right)}{x\left(x+1\right)} і \frac{6x}{x\left(x+1\right)} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+7-6x}{x\left(x+1\right)})
Виконайте множення у виразі 7\left(x+1\right)-6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x\left(x+1\right)})
Зведіть подібні члени у виразі 7x+7-6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{x^{2}+x})
Скористайтеся властивістю дистрибутивності, щоб помножити x на x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Для будь-яких двох диференційовних функцій похідна їхньої частки дорівнює дробу: різниця добутку знаменника на похідну чисельника та добутку чисельника на похідну знаменника, розділена на квадрат знаменника.
\frac{\left(x^{2}+x^{1}\right)x^{1-1}-\left(x^{1}+7\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Виконайте спрощення.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}+7\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Помножте x^{2}+x^{1} на x^{0}.
\frac{x^{2}x^{0}+x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}x^{0}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Помножте x^{1}+7 на 2x^{1}+x^{0}.
\frac{x^{2}+x^{1}-\left(2x^{1+1}+x^{1}+7\times 2x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Щоб перемножити степені з однаковими основами, просто додайте їхні показники.
\frac{x^{2}+x^{1}-\left(2x^{2}+x^{1}+14x^{1}+7x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Виконайте спрощення.
\frac{-x^{2}-14x^{1}-7x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Зведіть подібні члени.
\frac{-x^{2}-14x-7x^{0}}{\left(x^{2}+x\right)^{2}}
Для будь-якого члена t дійсне таке правило: t^{1}=t.
\frac{-x^{2}-14x-7}{\left(x^{2}+x\right)^{2}}
Для будь-якого члена t, окрім 0, t^{0}=1.