Перейти до основного контенту
Диференціювати за x
Tick mark Image
Обчислити
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

\frac{\left(x^{2}+5x^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+5x^{1}+6)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Для будь-яких двох диференційовних функцій похідна їхньої частки дорівнює дробу: різниця добутку знаменника на похідну чисельника та добутку чисельника на похідну знаменника, розділена на квадрат знаменника.
\frac{\left(x^{2}+5x^{1}+6\right)\times 3x^{1-1}-3x^{1}\left(2x^{2-1}+5x^{1-1}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
\frac{\left(x^{2}+5x^{1}+6\right)\times 3x^{0}-3x^{1}\left(2x^{1}+5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Виконайте спрощення.
\frac{x^{2}\times 3x^{0}+5x^{1}\times 3x^{0}+6\times 3x^{0}-3x^{1}\left(2x^{1}+5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Помножте x^{2}+5x^{1}+6 на 3x^{0}.
\frac{x^{2}\times 3x^{0}+5x^{1}\times 3x^{0}+6\times 3x^{0}-\left(3x^{1}\times 2x^{1}+3x^{1}\times 5x^{0}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Помножте 3x^{1} на 2x^{1}+5x^{0}.
\frac{3x^{2}+5\times 3x^{1}+6\times 3x^{0}-\left(3\times 2x^{1+1}+3\times 5x^{1}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Щоб перемножити степені з однаковими основами, просто додайте їхні показники.
\frac{3x^{2}+15x^{1}+18x^{0}-\left(6x^{2}+15x^{1}\right)}{\left(x^{2}+5x^{1}+6\right)^{2}}
Виконайте спрощення.
\frac{-3x^{2}+18x^{0}}{\left(x^{2}+5x^{1}+6\right)^{2}}
Зведіть подібні члени.
\frac{-3x^{2}+18x^{0}}{\left(x^{2}+5x+6\right)^{2}}
Для будь-якого члена t дійсне таке правило: t^{1}=t.
\frac{-3x^{2}+18\times 1}{\left(x^{2}+5x+6\right)^{2}}
Для будь-якого члена t, окрім 0, t^{0}=1.
\frac{-3x^{2}+18}{\left(x^{2}+5x+6\right)^{2}}
Для будь-якого члена t дійсне таке правило: t\times 1=t і 1t=t.