Знайдіть x
x=5
Графік
Ділити
Скопійовано в буфер обміну
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
Змінна x не може дорівнювати жодному зі значень -1,4, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на \left(x-4\right)\left(x+1\right) (найменше спільне кратне для x-4,x+1,\left(x-4\right)\left(x+1\right)).
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
Скористайтеся властивістю дистрибутивності, щоб помножити x+1 на 2x-7 і звести подібні члени.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
Скористайтеся властивістю дистрибутивності, щоб помножити x-4 на x+2 і звести подібні члени.
2x^{2}-5x-7-x^{2}+2x+8=x+6
Щоб знайти протилежне виразу x^{2}-2x-8, знайдіть протилежне значення для кожного члена.
x^{2}-5x-7+2x+8=x+6
Додайте 2x^{2} до -x^{2}, щоб отримати x^{2}.
x^{2}-3x-7+8=x+6
Додайте -5x до 2x, щоб отримати -3x.
x^{2}-3x+1=x+6
Додайте -7 до 8, щоб обчислити 1.
x^{2}-3x+1-x=6
Відніміть x з обох сторін.
x^{2}-4x+1=6
Додайте -3x до -x, щоб отримати -4x.
x^{2}-4x+1-6=0
Відніміть 6 з обох сторін.
x^{2}-4x-5=0
Відніміть 6 від 1, щоб отримати -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, -4 замість b і -5 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Піднесіть -4 до квадрата.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Помножте -4 на -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Додайте 16 до 20.
x=\frac{-\left(-4\right)±6}{2}
Видобудьте квадратний корінь із 36.
x=\frac{4±6}{2}
Число, протилежне до -4, дорівнює 4.
x=\frac{10}{2}
Тепер розв’яжіть рівняння x=\frac{4±6}{2} за додатного значення ±. Додайте 4 до 6.
x=5
Розділіть 10 на 2.
x=-\frac{2}{2}
Тепер розв’яжіть рівняння x=\frac{4±6}{2} за від’ємного значення ±. Відніміть 6 від 4.
x=-1
Розділіть -2 на 2.
x=5 x=-1
Тепер рівняння розв’язано.
x=5
Змінна x не може дорівнювати -1.
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
Змінна x не може дорівнювати жодному зі значень -1,4, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на \left(x-4\right)\left(x+1\right) (найменше спільне кратне для x-4,x+1,\left(x-4\right)\left(x+1\right)).
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
Скористайтеся властивістю дистрибутивності, щоб помножити x+1 на 2x-7 і звести подібні члени.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
Скористайтеся властивістю дистрибутивності, щоб помножити x-4 на x+2 і звести подібні члени.
2x^{2}-5x-7-x^{2}+2x+8=x+6
Щоб знайти протилежне виразу x^{2}-2x-8, знайдіть протилежне значення для кожного члена.
x^{2}-5x-7+2x+8=x+6
Додайте 2x^{2} до -x^{2}, щоб отримати x^{2}.
x^{2}-3x-7+8=x+6
Додайте -5x до 2x, щоб отримати -3x.
x^{2}-3x+1=x+6
Додайте -7 до 8, щоб обчислити 1.
x^{2}-3x+1-x=6
Відніміть x з обох сторін.
x^{2}-4x+1=6
Додайте -3x до -x, щоб отримати -4x.
x^{2}-4x=6-1
Відніміть 1 з обох сторін.
x^{2}-4x=5
Відніміть 1 від 6, щоб отримати 5.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Поділіть -4 (коефіцієнт члена x) на 2, щоб отримати -2. Потім додайте -2 у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}-4x+4=5+4
Піднесіть -2 до квадрата.
x^{2}-4x+4=9
Додайте 5 до 4.
\left(x-2\right)^{2}=9
Розкладіть x^{2}-4x+4 на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Видобудьте квадратний корінь з обох сторін рівняння.
x-2=3 x-2=-3
Виконайте спрощення.
x=5 x=-1
Додайте 2 до обох сторін цього рівняння.
x=5
Змінна x не може дорівнювати -1.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}