Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

\frac{10}{x-3}-\frac{3\left(x-3\right)}{x-3}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте 3 на \frac{x-3}{x-3}.
\frac{10-3\left(x-3\right)}{x-3}
Оскільки знаменник дробів \frac{10}{x-3} і \frac{3\left(x-3\right)}{x-3} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{10-3x+9}{x-3}
Виконайте множення у виразі 10-3\left(x-3\right).
\frac{19-3x}{x-3}
Зведіть подібні члени у виразі 10-3x+9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10}{x-3}-\frac{3\left(x-3\right)}{x-3})
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте 3 на \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-3\left(x-3\right)}{x-3})
Оскільки знаменник дробів \frac{10}{x-3} і \frac{3\left(x-3\right)}{x-3} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-3x+9}{x-3})
Виконайте множення у виразі 10-3\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{19-3x}{x-3})
Зведіть подібні члени у виразі 10-3x+9.
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+19)-\left(-3x^{1}+19\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
Для будь-яких двох диференційовних функцій похідна їхньої частки дорівнює дробу: різниця добутку знаменника на похідну чисельника та добутку чисельника на похідну знаменника, розділена на квадрат знаменника.
\frac{\left(x^{1}-3\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+19\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
Похідна многочлена дорівнює сумі похідних його доданків. Похідна константи дорівнює 0. Похідна ax^{n} дорівнює nax^{n-1}.
\frac{\left(x^{1}-3\right)\left(-3\right)x^{0}-\left(-3x^{1}+19\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Виконайте арифметичні операції.
\frac{x^{1}\left(-3\right)x^{0}-3\left(-3\right)x^{0}-\left(-3x^{1}x^{0}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Розкладіть за допомогою властивості дистрибутивності.
\frac{-3x^{1}-3\left(-3\right)x^{0}-\left(-3x^{1}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Щоб перемножити степені з однаковими основами, просто додайте їхні показники.
\frac{-3x^{1}+9x^{0}-\left(-3x^{1}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Виконайте арифметичні операції.
\frac{-3x^{1}+9x^{0}-\left(-3x^{1}\right)-19x^{0}}{\left(x^{1}-3\right)^{2}}
Видаліть зайві дужки.
\frac{\left(-3-\left(-3\right)\right)x^{1}+\left(9-19\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Зведіть подібні члени.
\frac{-10x^{0}}{\left(x^{1}-3\right)^{2}}
Відніміть -3 від -3 і 19 від 9.
\frac{-10x^{0}}{\left(x-3\right)^{2}}
Для будь-якого члена t дійсне таке правило: t^{1}=t.
\frac{-10}{\left(x-3\right)^{2}}
Для будь-якого члена t, окрім 0, t^{0}=1.