Перейти до основного контенту
Обчислити
Tick mark Image
Диференціювати за x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Розкладіть x^{2}-1 на множники. Розкладіть x^{2}+3x-4 на множники.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел \left(x-1\right)\left(x+1\right) та \left(x-1\right)\left(x+4\right) – це \left(x-1\right)\left(x+1\right)\left(x+4\right). Помножте \frac{1}{\left(x-1\right)\left(x+1\right)} на \frac{x+4}{x+4}. Помножте \frac{2}{\left(x-1\right)\left(x+4\right)} на \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Оскільки знаменник дробів \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} і \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Виконайте множення у виразі x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Зведіть подібні члени у виразі x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Розкладіть x^{2}-2x-3 на множники.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел \left(x-1\right)\left(x+1\right)\left(x+4\right) та \left(x-3\right)\left(x+1\right) – це \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Помножте \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} на \frac{x-3}{x-3}. Помножте \frac{1}{\left(x-3\right)\left(x+1\right)} на \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Оскільки \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} та \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} мають однакову знаменник, додайте їх чисельників.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Виконайте множення у виразі \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Зведіть подібні члени у виразі -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Розкладіть \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)