Перейти до основного контенту
Знайдіть x
Tick mark Image
Графік

Схожі проблеми з веб-пошуком

Ділити

x-2+\left(x+2\right)x=2
Змінна x не може дорівнювати жодному зі значень -2,2, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на \left(x-2\right)\left(x+2\right) (найменше спільне кратне для x+2,x-2,x^{2}-4).
x-2+x^{2}+2x=2
Скористайтеся властивістю дистрибутивності, щоб помножити x+2 на x.
3x-2+x^{2}=2
Додайте x до 2x, щоб отримати 3x.
3x-2+x^{2}-2=0
Відніміть 2 з обох сторін.
3x-4+x^{2}=0
Відніміть 2 від -2, щоб отримати -4.
x^{2}+3x-4=0
Упорядкуйте многочлен, щоб привести його до стандартного вигляду. Розташуйте доданки в порядку від найвищого степеня до найнижчого.
a+b=3 ab=-4
Щоб розв'язати рівняння, x^{2}+3x-4 використання формули x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Щоб знайти a та b, настройте систему для вирішено.
-1,4 -2,2
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -4.
-1+4=3 -2+2=0
Обчисліть суму для кожної пари.
a=-1 b=4
Розв’язком буде пара, що в сумі дорівнює 3.
\left(x-1\right)\left(x+4\right)
Перепишіть розкладений на множники вираз \left(x+a\right)\left(x+b\right) за допомогою отриманих значень.
x=1 x=-4
Щоб знайти рішення для формул, Розв'яжіть x-1=0 та x+4=0.
x-2+\left(x+2\right)x=2
Змінна x не може дорівнювати жодному зі значень -2,2, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на \left(x-2\right)\left(x+2\right) (найменше спільне кратне для x+2,x-2,x^{2}-4).
x-2+x^{2}+2x=2
Скористайтеся властивістю дистрибутивності, щоб помножити x+2 на x.
3x-2+x^{2}=2
Додайте x до 2x, щоб отримати 3x.
3x-2+x^{2}-2=0
Відніміть 2 з обох сторін.
3x-4+x^{2}=0
Відніміть 2 від -2, щоб отримати -4.
x^{2}+3x-4=0
Упорядкуйте многочлен, щоб привести його до стандартного вигляду. Розташуйте доданки в порядку від найвищого степеня до найнижчого.
a+b=3 ab=1\left(-4\right)=-4
Щоб розв’язати рівняння, розкладіть його ліву частину на множники методом групування. Спочатку потрібно переписати ліву частину у вигляді x^{2}+ax+bx-4. Щоб знайти a та b, настройте систему для вирішено.
-1,4 -2,2
Оскільки ab від'ємне, a і b протилежному знаки. Оскільки значення a+b додатне, додатне число за модулем більше за від’ємне. Наведіть усі пари цілих чисел, добуток яких дорівнює -4.
-1+4=3 -2+2=0
Обчисліть суму для кожної пари.
a=-1 b=4
Розв’язком буде пара, що в сумі дорівнює 3.
\left(x^{2}-x\right)+\left(4x-4\right)
Перепишіть x^{2}+3x-4 як \left(x^{2}-x\right)+\left(4x-4\right).
x\left(x-1\right)+4\left(x-1\right)
x на першій та 4 в друге групу.
\left(x-1\right)\left(x+4\right)
Винесіть за дужки спільний член x-1, використовуючи властивість дистрибутивності.
x=1 x=-4
Щоб знайти рішення для формул, Розв'яжіть x-1=0 та x+4=0.
x-2+\left(x+2\right)x=2
Змінна x не може дорівнювати жодному зі значень -2,2, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на \left(x-2\right)\left(x+2\right) (найменше спільне кратне для x+2,x-2,x^{2}-4).
x-2+x^{2}+2x=2
Скористайтеся властивістю дистрибутивності, щоб помножити x+2 на x.
3x-2+x^{2}=2
Додайте x до 2x, щоб отримати 3x.
3x-2+x^{2}-2=0
Відніміть 2 з обох сторін.
3x-4+x^{2}=0
Відніміть 2 від -2, щоб отримати -4.
x^{2}+3x-4=0
Усі рівняння форми ax^{2}+bx+c=0 можна розв’язати за формулою коренів квадратного рівняння: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ця формула дає два розв’язки: перший відповідає знаку додавання в ±, а другий знаку віднімання.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Це рівняння записано в стандартному вигляді: ax^{2}+bx+c=0. Підставте 1 замість a, 3 замість b і -4 замість c у формулі для коренів квадратного рівняння \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Піднесіть 3 до квадрата.
x=\frac{-3±\sqrt{9+16}}{2}
Помножте -4 на -4.
x=\frac{-3±\sqrt{25}}{2}
Додайте 9 до 16.
x=\frac{-3±5}{2}
Видобудьте квадратний корінь із 25.
x=\frac{2}{2}
Тепер розв’яжіть рівняння x=\frac{-3±5}{2} за додатного значення ±. Додайте -3 до 5.
x=1
Розділіть 2 на 2.
x=-\frac{8}{2}
Тепер розв’яжіть рівняння x=\frac{-3±5}{2} за від’ємного значення ±. Відніміть 5 від -3.
x=-4
Розділіть -8 на 2.
x=1 x=-4
Тепер рівняння розв’язано.
x-2+\left(x+2\right)x=2
Змінна x не може дорівнювати жодному зі значень -2,2, тому що ділення на нуль не визначено. Помножте обидві сторони цього рівняння на \left(x-2\right)\left(x+2\right) (найменше спільне кратне для x+2,x-2,x^{2}-4).
x-2+x^{2}+2x=2
Скористайтеся властивістю дистрибутивності, щоб помножити x+2 на x.
3x-2+x^{2}=2
Додайте x до 2x, щоб отримати 3x.
3x+x^{2}=2+2
Додайте 2 до обох сторін.
3x+x^{2}=4
Додайте 2 до 2, щоб обчислити 4.
x^{2}+3x=4
Квадратні рівняння такого вигляду можна розв’язати, доповнивши їх до повного квадрата. Для цього спочатку слід привести таке рівняння до вигляду x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Поділіть 3 (коефіцієнт члена x) на 2, щоб отримати \frac{3}{2}. Потім додайте \frac{3}{2} у квадраті до обох сторін цього рівняння. Тоді в лівій частині рівняння буде квадратне число.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Щоб піднести \frac{3}{2} до квадрата, піднесіть до квадрата чисельник і знаменник дробу.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Додайте 4 до \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Розкладіть x^{2}+3x+\frac{9}{4} на множник. Зазвичай, якщо x^{2}+bx+c – це ідеальний квадрат, його завжди можна розкласти на множник як \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Видобудьте квадратний корінь з обох сторін рівняння.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Виконайте спрощення.
x=1 x=-4
Відніміть \frac{3}{2} від обох сторін цього рівняння.