Обчислити
-\frac{1}{b^{6}}+\frac{1}{1728a^{12}}
Розкласти на множники
\frac{-1728+\frac{b^{6}}{a^{12}}}{1728b^{6}}
Вікторина
Algebra
\frac { 1 } { 1728 } \cdot ( \frac { 1 } { a ^ { 12 } } ) - ( \frac { 1 } { b ^ { 6 } } )
Ділити
Скопійовано в буфер обміну
\frac{1}{1728a^{12}}-\frac{1}{b^{6}}
Щоб помножити \frac{1}{1728} на \frac{1}{a^{12}}, перемножте між собою окремо їхні чисельники та їхні знаменники.
\frac{b^{6}}{1728b^{6}a^{12}}-\frac{1728a^{12}}{1728b^{6}a^{12}}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Найменше спільне кратне чисел 1728a^{12} та b^{6} – це 1728b^{6}a^{12}. Помножте \frac{1}{1728a^{12}} на \frac{b^{6}}{b^{6}}. Помножте \frac{1}{b^{6}} на \frac{1728a^{12}}{1728a^{12}}.
\frac{b^{6}-1728a^{12}}{1728b^{6}a^{12}}
Оскільки знаменник дробів \frac{b^{6}}{1728b^{6}a^{12}} і \frac{1728a^{12}}{1728b^{6}a^{12}} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}