Обчислити
-\frac{500}{117}\approx -4,273504274
Розкласти на множники
-\frac{500}{117} = -4\frac{32}{117} = -4,273504273504273
Ділити
Скопійовано в буфер обміну
\frac{\frac{4}{4}+\frac{1}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Перетворіть 1 на дріб \frac{4}{4}.
\frac{\frac{4+1}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Оскільки \frac{4}{4} та \frac{1}{4} мають однакову знаменник, додайте їх чисельників.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Додайте 4 до 1, щоб обчислити 5.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{3}{3}+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Перетворіть 1 на дріб \frac{3}{3}.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{3+2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Оскільки \frac{3}{3} та \frac{2}{3} мають однакову знаменник, додайте їх чисельників.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{5}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Додайте 3 до 2, щоб обчислити 5.
\frac{\frac{5}{4}}{\frac{1}{2}\times \frac{3}{5}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Розділіть \frac{1}{2} на \frac{5}{3}, помноживши \frac{1}{2} на величину, обернену до \frac{5}{3}.
\frac{\frac{5}{4}}{\frac{1\times 3}{2\times 5}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Щоб помножити \frac{1}{2} на \frac{3}{5}, перемножте між собою окремо їхні чисельники та їхні знаменники.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Виконайте множення в дробу \frac{1\times 3}{2\times 5}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{4}{4}-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Перетворіть 1 на дріб \frac{4}{4}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{4-1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Оскільки знаменник дробів \frac{4}{4} і \frac{1}{4} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{3}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Відніміть 1 від 4, щоб отримати 3.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{3}{4}\times 3}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Розділіть \frac{3}{4} на \frac{1}{3}, помноживши \frac{3}{4} на величину, обернену до \frac{1}{3}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{3\times 3}{4}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Виразіть \frac{3}{4}\times 3 як єдиний дріб.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{9}{4}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Помножте 3 на 3, щоб отримати 9.
\frac{\frac{5}{4}}{\frac{6}{20}-\frac{45}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Найменше спільне кратне чисел 10 та 4 – це 20. Перетворіть \frac{3}{10} та \frac{9}{4} на дроби зі знаменником 20.
\frac{\frac{5}{4}}{\frac{6-45}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Оскільки знаменник дробів \frac{6}{20} і \frac{45}{20} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
\frac{\frac{5}{4}}{-\frac{39}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Відніміть 45 від 6, щоб отримати -39.
\frac{5}{4}\left(-\frac{20}{39}\right)\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Розділіть \frac{5}{4} на -\frac{39}{20}, помноживши \frac{5}{4} на величину, обернену до -\frac{39}{20}.
\frac{5\left(-20\right)}{4\times 39}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Щоб помножити \frac{5}{4} на -\frac{20}{39}, перемножте між собою окремо їхні чисельники та їхні знаменники.
\frac{-100}{156}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Виконайте множення в дробу \frac{5\left(-20\right)}{4\times 39}.
-\frac{25}{39}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Поділіть чисельник і знаменник на 4, щоб звести дріб \frac{-100}{156} до нескоротного вигляду.
-\frac{25}{39}\left(\frac{30+1}{3}-\frac{3\times 3+2}{3}\right)
Помножте 10 на 3, щоб отримати 30.
-\frac{25}{39}\left(\frac{31}{3}-\frac{3\times 3+2}{3}\right)
Додайте 30 до 1, щоб обчислити 31.
-\frac{25}{39}\left(\frac{31}{3}-\frac{9+2}{3}\right)
Помножте 3 на 3, щоб отримати 9.
-\frac{25}{39}\left(\frac{31}{3}-\frac{11}{3}\right)
Додайте 9 до 2, щоб обчислити 11.
-\frac{25}{39}\times \frac{31-11}{3}
Оскільки знаменник дробів \frac{31}{3} і \frac{11}{3} збігається, щоб знайти їх різницю, достатньо відняти чисельники один від одного.
-\frac{25}{39}\times \frac{20}{3}
Відніміть 11 від 31, щоб отримати 20.
\frac{-25\times 20}{39\times 3}
Щоб помножити -\frac{25}{39} на \frac{20}{3}, перемножте між собою окремо їхні чисельники та їхні знаменники.
\frac{-500}{117}
Виконайте множення в дробу \frac{-25\times 20}{39\times 3}.
-\frac{500}{117}
Дріб \frac{-500}{117} можна записати як -\frac{500}{117}, виділивши знак "мінус".
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}