Обчислити
-7xy^{2}
Розкласти
-7xy^{2}
Ділити
Скопійовано в буфер обміну
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Розкладіть \left(xy\right)^{2}
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Щоб знайти добуток степенів з однаковими основами, додайте їхні показники. Додайте 1 до 2, щоб отримати 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Додайте x^{3}y^{2} до -2x^{3}y^{2}, щоб отримати -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Розкладіть \left(-\frac{1}{2}xy\right)^{2}
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Обчисліть -\frac{1}{2} у степені 2 і отримайте \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Відкиньте x^{2}y^{2} у чисельнику й знаменнику.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Розділіть -3x^{2}y^{3} на \frac{1}{4}, помноживши -3x^{2}y^{3} на величину, обернену до \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Розкладіть \left(2xy\right)^{2}
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Обчисліть 2 у степені 2 і отримайте 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Відкиньте x^{2}y^{2} у чисельнику й знаменнику.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте 2xy на \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Оскільки \frac{-3xy}{4} та \frac{4\times 2xy}{4} мають однакову знаменник, додайте їх чисельників.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Виконайте множення у виразі -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Зведіть подібні члени у виразі -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Помножте -3 на 4, щоб отримати -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Додайте 2x^{2}y^{3} до -12x^{2}y^{3}, щоб отримати -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Розділіть -10x^{2}y^{3} на \frac{5xy}{4}, помноживши -10x^{2}y^{3} на величину, обернену до \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Відкиньте 5xy у чисельнику й знаменнику.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Помножте -2 на 4, щоб отримати -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте -8xy^{2} на \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Оскільки \frac{-x^{3}y^{2}}{-x^{2}} та \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} мають однакову знаменник, додайте їх чисельників.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Виконайте множення у виразі -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Зведіть подібні члени у виразі -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Відкиньте x^{2} у чисельнику й знаменнику.
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Розкладіть \left(xy\right)^{2}
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Щоб знайти добуток степенів з однаковими основами, додайте їхні показники. Додайте 1 до 2, щоб отримати 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Додайте x^{3}y^{2} до -2x^{3}y^{2}, щоб отримати -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Розкладіть \left(-\frac{1}{2}xy\right)^{2}
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Обчисліть -\frac{1}{2} у степені 2 і отримайте \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Відкиньте x^{2}y^{2} у чисельнику й знаменнику.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Розділіть -3x^{2}y^{3} на \frac{1}{4}, помноживши -3x^{2}y^{3} на величину, обернену до \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Розкладіть \left(2xy\right)^{2}
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Обчисліть 2 у степені 2 і отримайте 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Відкиньте x^{2}y^{2} у чисельнику й знаменнику.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте 2xy на \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Оскільки \frac{-3xy}{4} та \frac{4\times 2xy}{4} мають однакову знаменник, додайте їх чисельників.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Виконайте множення у виразі -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Зведіть подібні члени у виразі -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Помножте -3 на 4, щоб отримати -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Додайте 2x^{2}y^{3} до -12x^{2}y^{3}, щоб отримати -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Розділіть -10x^{2}y^{3} на \frac{5xy}{4}, помноживши -10x^{2}y^{3} на величину, обернену до \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Відкиньте 5xy у чисельнику й знаменнику.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Помножте -2 на 4, щоб отримати -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Щоб додавати або віднімати вирази, розкрийте дужки та приведіть їх до спільного знаменника. Помножте -8xy^{2} на \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Оскільки \frac{-x^{3}y^{2}}{-x^{2}} та \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} мають однакову знаменник, додайте їх чисельників.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Виконайте множення у виразі -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Зведіть подібні члени у виразі -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Відкиньте x^{2} у чисельнику й знаменнику.
Приклади
Квадратне рівняння
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрії
4 \sin \theta \cos \theta = 2 \sin \theta
Лінійне рівняння
y = 3x + 4
Арифметика
699 * 533
Матриця
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Рівняння одночасного
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференціації
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Інтеграція
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Обмеження
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}