w.r.t. x نى پارچىلاش
-\sin(x)
ھېسابلاش
\cos(x)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))=\left(\lim_{h\to 0}\frac{\cos(x+h)-\cos(x)}{h}\right)
فۇنكسىيە f\left(x\right) دە ھاسىلە \frac{f\left(x+h\right)-f\left(x\right)}{h} نىڭ چېكى، شۇڭا ئەگەر شۇ چەك بار بولسا h نىڭ ئورنى 0.
\lim_{h\to 0}\frac{\cos(x+h)-\cos(x)}{h}
كوسىنۇس يىغىندا فورمۇلاسىنى ئىشلىتىڭ.
\lim_{h\to 0}\frac{\cos(x)\left(\cos(h)-1\right)-\sin(x)\sin(h)}{h}
\cos(x) نى ئاجرىتىپ چىقىرىڭ.
\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
چەكنى قايتا يېزىڭ.
\cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ھېسابلاش چېكىدە h نىڭ ئورنى 0 دە بولغاندا x تۇراقلىق مىقدار بولىدىغان پاكىتنى ئىشلىتىڭ.
\cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x)
چەك \lim_{x\to 0}\frac{\sin(x)}{x} نىڭ قىممىتى 1 دۇر.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
چەك \lim_{h\to 0}\frac{\cos(h)-1}{h} نى ھېسابلاش ئۈچۈن سۈرەت ۋە مەخرەجنى \cos(h)+1 گە كۆپەيتىڭ.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 نى \cos(h)-1 كە كۆپەيتىڭ.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
پىفاگور تەڭلىكىنى ئىشلىتىڭ.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
چەكنى قايتا يېزىڭ.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
چەك \lim_{x\to 0}\frac{\sin(x)}{x} نىڭ قىممىتى 1 دۇر.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} نىڭ 0 دە داۋاملىشىدىغانلىقىدىن ئىبارەت پاكىتنى ئىشلىتىڭ.
-\sin(x)
قىممەت 0 نى ئىپادە \cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x) گە ئالماشتۇرۇڭ.
مۇشۇنىڭغا ئوخشاش مەسىلىلەر
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )