Төп эчтәлеккә скип
z өчен чишелеш
Tick mark Image
z билгеләгез
Tick mark Image

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

z=-i-\frac{1+2i}{2-i}
3'ның куәтен i исәпләгез һәм -i алыгыз.
z=-i-\frac{\left(1+2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Ваклаучының комплекс бәйлесе тарафыннан \frac{1+2i}{2-i}-ның ваклаучысын да, санаучысын да тапкырлагыз, 2+i.
z=-i-\frac{5i}{5}
\frac{\left(1+2i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}-да тапкырлаулар башкарыгыз.
z=-i-i
i алу өчен, 5i 5'га бүлегез.
z=-2i
-2i алу өчен, -i i'нан алыгыз.