Төп эчтәлеккә скип
x өчен чишелеш (complex solution)
Tick mark Image
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

±4,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 4 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{3}-4x^{2}+6x-4=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{3}-4x^{2}+6x-4 алу өчен, x^{4}-5x^{3}+10x^{2}-10x+4 x-1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±4,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын -4 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=2
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{2}-2x+2=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{2}-2x+2 алу өчен, x^{3}-4x^{2}+6x-4 x-2'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 2}}{2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 1-ны a өчен, -2-не b өчен, һәм 2-не c өчен алыштырабыз.
x=\frac{2±\sqrt{-4}}{2}
Исәпләүләрне башкарыгыз.
x=1-i x=1+i
± — плюс, ә ± — минус булганда, x^{2}-2x+2=0 тигезләмәсен чишегез.
x=1 x=2 x=1-i x=1+i
Барлык табылган чишелешләрне күрсәтегез.
±4,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын 4 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=1
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{3}-4x^{2}+6x-4=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{3}-4x^{2}+6x-4 алу өчен, x^{4}-5x^{3}+10x^{2}-10x+4 x-1'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
±4,±2,±1
Рациональ тамыр теоремасы буенча, күпбуынның барлык рациональ тамырлар \frac{p}{q} формасында, кайда p константа шартын -4 бүлә һәм q өйдәүче коэффициентны 1 бүлә. Барлык кандидатлар исемлеге \frac{p}{q}.
x=2
Абсолют кыйммәте буенча иң кечкенәдән башлап, барлык бөтен саннарны кулланып, бер андый тамырны табыгыз. Бөтен тамырлар табылмаса, вакланмаларны кулланып карагыз.
x^{2}-2x+2=0
Тапкырлаучы теоремасы буенча, x-k һәр k тамыр өчен күпбуынның тапкырлаучысы. x^{2}-2x+2 алу өчен, x^{3}-4x^{2}+6x-4 x-2'га бүлегез. Нәтиҗәсе 0 тигез булган тигезләмәне чишегез.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 2}}{2}
ax^{2}+bx+c=0-нан барлык тигезләмәләр квадратик тигезләмә белән кулланып чишелгән булырга мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадратик тигезләмәдә 1-ны a өчен, -2-не b өчен, һәм 2-не c өчен алыштырабыз.
x=\frac{2±\sqrt{-4}}{2}
Исәпләүләрне башкарыгыз.
x\in \emptyset
Реаль кырда тискәре санның квадрат тамыры билгеләнмәгән, чишелеше юк.
x=1 x=2
Барлык табылган чишелешләрне күрсәтегез.