Төп эчтәлеккә скип
x өчен чишелеш
Tick mark Image
Граф

Веб-эзләүнең моңа охшаш проблемалары

Уртаклык

x^{2}-3x+1=10
ax^{2}+bx+c=0 формадагы барлык тигезләмәләр түбәндәге квадрат формуласын кулланып чишелергә мөмкин: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадрат формуласы ике чишелеш бирә, берсендә ± кушу һәм берсендә алу булганда.
x^{2}-3x+1-10=10-10
Тигезләмәнең ике ягыннан 10 алыгыз.
x^{2}-3x+1-10=0
10'ны үзеннән алу 0 калдыра.
x^{2}-3x-9=0
10'ны 1'нан алыгыз.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)}}{2}
Әлеге тигезләмә стандарт формасында: ax^{2}+bx+c=0. Квадрат формуласында 1'ны a'га, -3'ны b'га һәм -9'ны c'га алыштырыгыз, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)}}{2}
-3 квадратын табыгыз.
x=\frac{-\left(-3\right)±\sqrt{9+36}}{2}
-4'ны -9 тапкыр тапкырлагыз.
x=\frac{-\left(-3\right)±\sqrt{45}}{2}
9'ны 36'га өстәгез.
x=\frac{-\left(-3\right)±3\sqrt{5}}{2}
45'нан квадрат тамырын чыгартыгыз.
x=\frac{3±3\sqrt{5}}{2}
-3 санның капма-каршысы - 3.
x=\frac{3\sqrt{5}+3}{2}
Хәзер ± плюс булганда, x=\frac{3±3\sqrt{5}}{2} тигезләмәсен чишегез. 3'ны 3\sqrt{5}'га өстәгез.
x=\frac{3-3\sqrt{5}}{2}
Хәзер ± минус булганда, x=\frac{3±3\sqrt{5}}{2} тигезләмәсен чишегез. 3\sqrt{5}'ны 3'нан алыгыз.
x=\frac{3\sqrt{5}+3}{2} x=\frac{3-3\sqrt{5}}{2}
Тигезләмә хәзер чишелгән.
x^{2}-3x+1=10
Мондый квадрат тигезләмәләрне квадратны тәмамлап чишәргә мөмкин. Квадратны тәмамлау өчен, тигезләмә башта x^{2}+bx=c формасында булырга тиеш.
x^{2}-3x+1-1=10-1
Тигезләмәнең ике ягыннан 1 алыгыз.
x^{2}-3x=10-1
1'ны үзеннән алу 0 калдыра.
x^{2}-3x=9
1'ны 10'нан алыгыз.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=9+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2}-не алу өчен, -3 — x элементының коэффициентын — 2-гә бүлегез. Аннары -\frac{3}{2}'ның квадратын тигезләмәнең ике ягына өстәгез. Бу адым тигезләмәнең сул ягын идеаль квадрат итә.
x^{2}-3x+\frac{9}{4}=9+\frac{9}{4}
Вакланманың санаучысын һәм ваклаучысын квадратлап, -\frac{3}{2} квадратын табыгыз.
x^{2}-3x+\frac{9}{4}=\frac{45}{4}
9'ны \frac{9}{4}'га өстәгез.
\left(x-\frac{3}{2}\right)^{2}=\frac{45}{4}
x^{2}-3x+\frac{9}{4} тапкырлаучыларга таратыгыз. Гомуми очракта, x^{2}+bx+c идеаль квадрат булганда, ул һәрвакыт \left(x+\frac{b}{2}\right)^{2} буларак вакланырга мөмкин.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Тигезләмәнең ике ягыннан квадрат тамырын чыгарту.
x-\frac{3}{2}=\frac{3\sqrt{5}}{2} x-\frac{3}{2}=-\frac{3\sqrt{5}}{2}
Гадиләштерегез.
x=\frac{3\sqrt{5}+3}{2} x=\frac{3-3\sqrt{5}}{2}
Тигезләмәнең ике ягына \frac{3}{2} өстәгез.